I have the necessity to calculate more then one accuracy in the same time, concurrently.
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
The piece of code is the same of the mnist example in the tutorial of TensorFlow but instead of having:
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
I have two placeolder because I already calculated and stored them.
W = tf.placeholder(tf.float32, [784, 10])
b = tf.placeholder(tf.float32, [10])
I want to fill the network with the values I aready have and then calculate the accuracy and this have to happen for each network I loaded.
So if I load 20 networks I want to calculate in parallel the accuracy for each one. There is a way with the session run to execute the same operation with different input?