I'm trying to train / use a convolutional neural network with neupy library for a project, but I'm getting errors in the training phase.
I have many images (rgb, shape=66, 160, 3) and I split them in the training and test sets. Then I'm trying to train one convolutional neural network (I'll try to optimize with different algorithm, layer number and size later). The target output for my project is a number [-1, 1], I'm solving a regression problem but I have issues before.
The error I'm getting right now is: ValueError: Cannot shuffle matrices. All matrices should have the same number of rows
The relevant code:
print numpy.array(y_train).shape
# outputs (84, 66, 160, 3)
print numpy.array(y_test).shape
# outputs (15, 66, 160, 3)
cgnet = algorithms.Adadelta(
[
layers.Input((6, 66, 160*3)),
layers.Convolution((8, 3, 3)),
layers.Relu(),
layers.Convolution((8, 3, 3)),
layers.Relu(),
layers.MaxPooling((2, 2)),
layers.Reshape(),
layers.Linear(1024),
layers.Softmax(10),
],
error='categorical_crossentropy',
step=1.0,
verbose=True,
shuffle_data=True,
#shuffle_data=False,
reduction_freq=8,
addons=[algorithms.StepDecay],
)
print cgnet.architecture()
cgnet.train(x_train, y_train, x_test, y_test, epochs=100)
Output:
Main information
[ALGORITHM] Adadelta
[OPTION] batch_size = 128
[OPTION] verbose = True
[OPTION] epoch_end_signal = None
[OPTION] show_epoch = 1
[OPTION] shuffle_data = True
[OPTION] step = 1.0
[OPTION] train_end_signal = None
[OPTION] error = categorical_crossentropy
[OPTION] addons = ['StepDecay']
[OPTION] decay = 0.95
[OPTION] epsilon = 1e-05
[OPTION] reduction_freq = 8
[THEANO] Initializing Theano variables and functions.
[THEANO] Initialization finished successfully. It took 7.01 seconds
Network's architecture
-------------------------------------------------
| # | Input shape | Layer Type | Output shape |
-------------------------------------------------
| 1 | (6, 66, 480) | Input | (6, 66, 480) |
| 2 | (6, 66, 480) | Convolution | (8, 64, 478) |
| 3 | (8, 64, 478) | Relu | (8, 64, 478) |
| 4 | (8, 64, 478) | Convolution | (8, 62, 476) |
| 5 | (8, 62, 476) | Relu | (8, 62, 476) |
| 6 | (8, 62, 476) | MaxPooling | (8, 31, 238) |
| 7 | (8, 31, 238) | Reshape | 59024 |
| 8 | 59024 | Linear | 1024 |
| 9 | 1024 | Softmax | 10 |
-------------------------------------------------
None
Start training
[TRAIN DATA] 84 samples, feature shape: (66, 160, 3)
[TEST DATA] 15 samples, feature shape: (66, 160, 3)
[TRAINING] Total epochs: 100
------------------------------------------------
| Epoch # | Train err | Valid err | Time |
------------------------------------------------
Traceback (most recent call last):
File "./ml_neupy.py", line 68, in <module>
cgnet.train(x_train, y_train, x_test, y_test, epochs=100)
File "/usr/local/lib/python2.7/dist-packages/neupy/algorithms/constructor.py", line 539, in train
*args, **kwargs
File "/usr/local/lib/python2.7/dist-packages/neupy/algorithms/learning.py", line 49, in train
summary=summary
File "/usr/local/lib/python2.7/dist-packages/neupy/algorithms/base.py", line 409, in train
target_train)
File "/usr/local/lib/python2.7/dist-packages/neupy/algorithms/utils.py", line 146, in shuffle
raise ValueError("Cannot shuffle matrices. All matrices should "
ValueError: Cannot shuffle matrices. All matrices should have the same number of rows
What is wrong with the input data or the network?
Thanks