I am planning to use OpenMP threads for an intense computation. However, I couldn't acquire my expected performance in first trial. I thought I have several issues on it, but I have not assured yet. Generally, I am thinking the performance bottleneck is caused from fork and join model. Can you help me in some ways. First, in a route cycle, running on a consumer thread, there is 2 independent for loops and some additional functions. The functions are located at end of the routine cycle and between the for loops, which is already seen below:
void routineFunction(short* xs, float* xf, float* yf, float* h)
{
// Casting
#pragma omp parallel for
for (int n = 0; n<1024*1024; n++)
{
xf[n] = (float)xs[n];
}
memset(yf,0,1024*1024*sizeof( float ));
// Filtering
#pragma omp parallel for
for (int n = 0; n<1024*1024-1024; n++)
{
for(int nn = 0; nn<1024; nn++)
{
yf[n]+=xf[n+nn]*h[nn];
}
}
status = DftiComputeBackward(hand, yf, yf); // Compute backward transform
}
Note: This code cannot be compilied, because I did it more readible as clearing details.
OpenMP thread number is set 8 dynamically. I observed the used threads in Windows taskbar. While thread number is increased by significantly, I didn't observe any performance improvement. I have some guesses, but I want to still discuss with you for further implementations.
My questions are these.
Does fork and join model correspond to thread creation and abortion? Is it same cost for the software?
Once routineFunction is called by consumer, Does OpenMP thread fork and join every time?
During the running of rutineFunction, does OpenMP thread fork and join at each for loop? Or, does compiler help the second loop as working with existed threads? In case, the for loops cause fork and join at 2 times, how to align the code again. Is combining the two loops in a single loop sensible for saving performance, or using parallel region (
#pragma omp parallel
) and#pragma omp for
(not#pragma omp parallel for
) better choice for sharing works. I care about it forces me static scheduling by using thread id and thread numbers. According the document at page 34, static scheduling can cause load imbalance. Actually, I am familiar static scheduling because of CUDA programming, but I want to still avoid it, if there is any performance issue. I also read an answer in stackoverflow which points smart OpenMP algorithms do not join master thread after a parallel region is completed writed by Alexey Kukanov in last paragraph. How to utilize busy wait and sleep attributes of OpenMP for avoiding joining the master thread after first loop is completed.Is there another reason for performance issue in the code?