Ok, since the answer of the question here was actually not intended for Java, I have rewritten it in Java.
The reasoning is still the same thought. We are still using sampleByKeyExact
. There is no out of the box miracle features for now (spark 2.1.0)
So here you go :
package org.awesomespark.examples;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.*;
import scala.Tuple2;
import java.util.Map;
public class StratifiedDatasets {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.appName("Stratified Datasets")
.getOrCreate();
Dataset<Row> data = spark.read().format("libsvm").load("sample_libsvm_data.txt");
JavaPairRDD<Double, Row> rdd = data.toJavaRDD().keyBy(x -> x.getDouble(0));
Map<Double, Double> fractions = rdd.map(Tuple2::_1)
.distinct()
.mapToPair((PairFunction<Double, Double, Double>) (Double x) -> new Tuple2(x, 0.8))
.collectAsMap();
JavaRDD<Row> sampledRDD = rdd.sampleByKeyExact(false, fractions, 2L).values();
Dataset<Row> sampledData = spark.createDataFrame(sampledRDD, data.schema());
sampledData.show();
sampledData.printSchema();
}
}
Now let's package and submit :
$ sbt package
[...]
// [success] Total time: 2 s, completed Jan 16, 2017 1:45:51 PM
$ spark-submit --class org.awesomespark.examples.StratifiedDatasets target/scala-2.10/java-stratified-dataset_2.10-1.0.jar
[...]
// +-----+--------------------+
// |label| features|
// +-----+--------------------+
// | 0.0|(692,[127,128,129...|
// | 1.0|(692,[158,159,160...|
// | 1.0|(692,[124,125,126...|
// | 1.0|(692,[152,153,154...|
// | 1.0|(692,[151,152,153...|
// | 0.0|(692,[129,130,131...|
// | 1.0|(692,[99,100,101,...|
// | 0.0|(692,[154,155,156...|
// | 0.0|(692,[127,128,129...|
// | 1.0|(692,[154,155,156...|
// | 0.0|(692,[151,152,153...|
// | 1.0|(692,[129,130,131...|
// | 0.0|(692,[154,155,156...|
// | 1.0|(692,[150,151,152...|
// | 0.0|(692,[124,125,126...|
// | 0.0|(692,[152,153,154...|
// | 1.0|(692,[97,98,99,12...|
// | 1.0|(692,[124,125,126...|
// | 1.0|(692,[156,157,158...|
// | 1.0|(692,[127,128,129...|
// +-----+--------------------+
// only showing top 20 rows
// root
// |-- label: double (nullable = true)
// |-- features: vector (nullable = true)
For python users, you can also check my answer Stratified sampling with pyspark.