I wrote this program to properly learn how to use multi-threading. I want to implement something similar to this in my own program:
import numpy as np
import time
import os
import math
import random
from threading import Thread
def powExp(x, r):
for c in range(x.shape[1]):
x[r][c] = math.pow(100, x[r][c])
def main():
print()
rows = 100
cols = 100
x = np.random.random((rows, cols))
y = x.copy()
start = time.time()
threads = []
for r in range(x.shape[0]):
t = Thread(target = powExp, args = (x, r))
threads.append(t)
t.start()
for t in threads:
t.join()
end = time.time()
print("Multithreaded calculation took {n} seconds!".format(n = end - start))
start = time.time()
for r in range(y.shape[0]):
for c in range(y.shape[1]):
y[r][c] = math.pow(100, y[r][c])
end = time.time()
print("Singlethreaded calculation took {n} seconds!".format(n = end - start))
print()
randRow = random.randint(0, rows - 1)
randCol = random.randint(0, cols - 1)
print("Checking random indices in x and y:")
print("x[{rR}][{rC}]: = {n}".format(rR = randRow, rC = randCol, n = x[randRow][randCol]))
print("y[{rR}][{rC}]: = {n}".format(rR = randRow, rC = randCol, n = y[randRow][randCol]))
print()
for r in range(x.shape[0]):
for c in range(x.shape[1]):
if(x[r][c] != y[r][c]):
print("ERROR NO WORK WAS DONE")
print("x[{r}][{c}]: {n} == y[{r}][{c}]: {ny}".format(
r = r,
c = c,
n = x[r][c],
ny = y[r][c]
))
quit()
assert(np.array_equal(x, y))
if __name__ == main():
main()
As you can see from the code the goal here is to parallelize the operation math.pow(100, x[r][c]) by creating a thread for every column. However this code is extremely slow, a lot slower than single-threaded versions.
Output:
Multithreaded calculation took 0.026447772979736328 seconds!
Singlethreaded calculation took 0.006798267364501953 seconds!
Checking random indices in x and y:
x[58][58]: = 9.792315687115973
y[58][58]: = 9.792315687115973
I searched through stackoverflow and found some info about the GIL forcing python bytecode to be executed on a single core only. However I'm not sure that this is in fact what is limiting my parallelization. I tried rearranging the parallelized for-loop using pools instead of threads. Nothing seems to be working.
Python code performance decreases with threading
EDIT: This thread discusses the same issue. Is it completely impossible to increase performance using multi-threading in python because of the GIL? Is the GIL causing my slowdowns?
EDIT 2 (2017-01-18): So from what I can gather after searching for quite a bit online it seems like python is really bad for parallelism. What I'm trying to do is parellelize a python function used in a neural network implemented in tensorflow...it seems like adding a custom op is the way to go.