You haven't really specified the constraints of the problem you're trying to solve, but if it's from a collection of interview questions it seems likely that it might be something like this.
In any case, the answer shown would not be acceptable for the following reasons:
The distribution of the results is not uniform, even if the samples you read from time.time()
are uniform.
The results from time.time()
will probably not be uniform. The result depends on the time at which you make the call, and if your calls are not uniformly distributed in time then the results will probably not be uniformly distributed either. In the worst case, if you're trying to randomise an array on a very fast processor then you might complete the entire operation before the time changes, so the whole array would be filled with the same value. Or at least large chunks of it would be.
The changes to the random value are highly predictable and can be inferred from the speed at which your program runs. In the very-fast-computer case you'll get a bunch of x
followed by a bunch of x+1
, but even if the computer is much slower or the clock is more precise, you're likely to get aliasing patterns which behave in a similarly predictable way.
Since you take the time value in decimal, it's likely that the least significant digit doesn't visit all possible values uniformly. It's most likely a conversion from binary to some arbitrary number of decimal digits, and the distribution of the least significant digit can be quite uneven when that happens.
The code should be much simpler. It's a complicated solution with many special cases, which reflects a piecemeal approach to the problem rather than an understanding of the relevant principles. An ideal solution would make the behaviour self-evident without having to consider each case individually.
The last one would probably end the interview, I'm afraid. Perhaps not if you could tell a good story about how you got there.
You need to understand the pigeonhole principle to begin to develop a solution. It looks like you're reducing the time to its least significant decimal digit for possible values 0 to 9. Legal results are 1 to 7. If you have seven pigeonholes and ten pigeons then you can start by putting your first seven pigeons into one hole each, but then you have three pigeons left. There's nowhere that you can put the remaining three pigeons (provided you only use whole pigeons) such that every hole has the same number of pigeons.
The problem is that if you pick a pigeon at random and ask what hole it's in, the answer is more likely to be a hole with two pigeons than a hole with one. This is what's called "non-uniform", and it causes all sorts of problems, depending on what you need your random numbers for.
You would either need to figure out how to ensure that all holes are filled equally, or you would have to come up with an explanation for why it doesn't matter.
Typically the "doesn't matter" answer is that each hole has either a million or a million and one pigeons in it, and for the scale of problem you're working with the bias would be undetectable.