Background
In C, according to the IEEE 754 binary floating point standard (so, if you use a float
or a double
) you're going to get an exact value that can be compared exactly with another variable of the same type. Well, this is true unless your computations result in a value that lies outside the range of integers that can be represented (i.e., overflow).
Why is Infinity == Infinity
resA
and resB
The IEEE-754 standard tailored the values of infinity and negative infinity to be greater than or less than, respectively, all other values that may be represented according to the standard (<= INFINITY == 0 11111111111 0000000000000000000000000000000000000000000000000000
and >= -INFINITY == 1 11111111111 0000000000000000000000000000000000000000000000000000
), except for NaN, which is neither less than, equal to, or greater than any floating point value (even itself). Take note that infinity and it's negative have explicit definitions in their sign, exponent, and mantissa bits.
So, resA
and resB
are infinity and since infinity is explicitly defined and reproducible, resA==resB
. I'm fairly certain this is how isinf()
is implemented.
Why is NaN != NaN
However, NaN is not explicitly defined. A NaN value has a sign bit of 0
, exponent bits of all 1
s (just like infinity and it's negative), and any set of non-zero fraction bits (Source). So, how would you tell one NaN from another, if their fraction bits are arbitrary anyways? Well, the standard doesn't assume that and simply returns false when two floating point values of this structure are compared to one another.
More Explanation
Because infinity is an explicitly defined value (Source, GNU C Manual):
Infinities propagate through calculations as one would expect
2 + ∞ = ∞
4 ÷ ∞ = 0
arctan (∞) = π/2.
However, NaN may or may not propagate through propagate through computations. When it does, it is a QNan (Quieting NaN, most significant fraction bit set) and all computations will result in NaN. When it doesn't, it is a SNan (Signalling NaN, most significant fraction bit not set) and all computations will result in an error.