2

I have the below data frame

ipdb> csv_data
  country_edited sale_edited  date_edited  transformation_edited
0          India      403171     20090101                     10
1         Bhutan      394096     20090101                     20
2          Nepal    Set Null     20090101                     30
3         madhya      355883     20090101                     40
4          sudan    Set Null     20090101                     50

I want to replace all the column values that contain Set Null to Nan and so i approached below way

import numpy

def set_NaN(element):
    if element == 'Set Null':
        return numpy.nan
    else:
        return element

csv_data = csv_data.applymap(lambda element: set_NaN(element))

But it does not changes anything

ipdb> print csv_data
  country_edited sale_edited  date_edited  transformation_edited
0          India      403171     20090101                     10
1         Bhutan      394096     20090101                     20
2          Nepal    Set Null     20090101                     30
3         madhya      355883     20090101                     40
4          sudan    Set Null     20090101                     50
ipdb>

But when i print only csv_data.applymap(lambda element: set_NaN(element)) as below i can see the output, but when assigned back i can't get the data i intended to

ipdb> csv_data.applymap(lambda element: set_NaN(element))
  country_edited sale_edited  date_edited  transformation_edited
0          India      403171     20090101                     10
1         Bhutan      394096     20090101                     20
2          Nepal         NaN     20090101                     30
3         madhya      355883     20090101                     40
4          sudan         NaN     20090101                     50

So how to replace the column values with NaN based on certain string ?

Shiva Krishna Bavandla
  • 25,548
  • 75
  • 193
  • 313

1 Answers1

2

You need DataFrame.mask, it replace True values of mask by NaN. Also some columns are numeric, so need cast values of df to string first:

print (csv_data.astype(str) == 'Set Null')
  country_edited sale_edited date_edited transformation_edited
0          False       False       False                 False
1          False       False       False                 False
2          False        True       False                 False
3          False       False       False                 False
4          False        True       False                 False


csv_data = csv_data.mask(csv_data.astype(str) == 'Set Null')
print (csv_data)
  country_edited sale_edited  date_edited  transformation_edited
0          India      403171     20090101                     10
1         Bhutan      394096     20090101                     20
2          Nepal         NaN     20090101                     30
3         madhya      355883     20090101                     40
4          sudan         NaN     20090101                     50

Another solution with numpy boolean mask - compare numpy array by DataFrame.values:

print (csv_data.values == 'Set Null')
[[False False False False]
 [False False False False]
 [False  True False False]
 [False False False False]
 [False  True False False]]

csv_data = csv_data.mask(csv_data.values == 'Set Null')
print (csv_data)
  country_edited sale_edited  date_edited  transformation_edited
0          India      403171     20090101                     10
1         Bhutan      394096     20090101                     20
2          Nepal         NaN     20090101                     30
3         madhya      355883     20090101                     40
4          sudan         NaN     20090101                     50

In your solution is necessary assign data back to csv_data:

def set_NaN(element):
    if element == 'Set Null':
        return numpy.nan
    else:
        return element

csv_data = csv_data.applymap(lambda element: set_NaN(element))
print (csv_data)
  country_edited sale_edited  date_edited  transformation_edited
0          India      403171     20090101                     10
1         Bhutan      394096     20090101                     20
2          Nepal         NaN     20090101                     30
3         madhya      355883     20090101                     40
4          sudan         NaN     20090101                     50
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252