library(stringi)
library(dplyr)
# recreate dummy data
lapply(1:1000,function(i){
assign(sprintf("eq1.%s",i),
as.data.frame(matrix(ncol = 12, nrow = 13, sample(1:15))),
envir = .GlobalEnv)
})
# Now have 1000 data frames in my working environment named eq1.[1:1000]
> str(ls(pattern = "eq1.\\d+"))
> chr [1:1000] "eq1.1" "eq1.10" "eq1.100" "eq1.1000" "eq1.101" "eq1.102" "eq1.103" ...
1) create a holding data frame from the ep1.1 data frame that will be appended
each iteration in the following loop
empty_df <- eq1.1
2) im going to search for all the data frame named by convention and
create a data frame from the returned characters which represent our data frame
objects, but are nothing more than a character string.
3) mutate that data frame to hold an indexing column so that I can order the data frames properly from 1:1000 as the character representation will not be in numeric order from the step above
4) Drop the indexing column once the data frame names are in proper sequence
and then unlist the dfs
column back into a character sequence and slice
the first value out, since it is stored already to our empty_df
5) loop through that sequence and for each iteration globally assign and
bind the preceding data frame into place. So for example on iteration 1,
the empty_df is now the same as data.frame(ep1.1, ep1.2) and for the
second iteration the empty_df is the same as data.frame(ep1.1, ep1.2, ep1.3)
NOTE: the get
function takes the character representation and calls the data object from it. see ?get for details
lapply(
data.frame(dfs = ls(pattern = 'eq1\\.\\d+'))%>%
mutate(nth = as.numeric(stri_extract_last_regex(dfs,'\\d+'))) %>%
arrange(nth) %>% select(-nth) %>% slice(-1) %>% .$dfs, function(i){
empty_df <<- data.frame(empty_df, get(i))
}
)
All done, all the dataframes are bound to the empty_df and to check
> dim(empty_df)
[1] 13 12000