please, I can't understand what this function does. here is the code context:
#group outcomes into bins of similar probability
bins = np.linspace(0, 1, 20)
cuts = pd.cut(prob, bins)
print(cuts)
binwidth = bins[1] - bins[0]
#freshness ratio and number of examples in each bin
cal = data.groupby(cuts).outcome.agg(['mean', 'count'])
print(cal['count'])
print(cal['mean'])
cal['pmid'] = (bins[:-1] + bins[1:]) / 2
cal['sig'] = np.sqrt(cal.pmid * (1 - cal.pmid) / cal['count'])
#the calibration plot
ax = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
p = plt.errorbar(cal.pmid, cal['mean'], cal['sig'])
plt.plot(cal.pmid, cal.pmid, linestyle='--', lw=1, color='k')
plt.ylabel("Empirical Fraction")