Here are three solutions to the maximum subarray sum problem. solve1()
runs in O(N) time, solve2()
runs in O(N^2), and solve3()
runs in O(N^3). Note that solve1()
is known as Kadane's algorithm.
The difference between the O(N^2) and O(N^3) functions is that in the O(N^2) function, the sum is computed implicitly every time the end
index is incremented, while in the O(N^3) function, the sum is computed with a third explicit loop between start
and end
.
I've additionally added code to all three approaches to handle the case when all the input values are negative.
public class MaximumSubarraySum {
/**
* Solves the maximum subarray sum in O(N) time.
*/
public static int solve1(int[] input) {
int sum = input[0];
int bestSum = sum;
for (int i = 1; i < input.length; i++) {
sum = Math.max(input[i], input[i] + sum);
bestSum = Math.max(sum, bestSum);
}
return bestSum;
}
/**
* Solves the maximum subarray sum in O(N^2) time. The two indices
* 'start' and 'end' iterate over all possible N^2 index pairs, with
* the sum of input[start, end] always computed for every 'end' value.
*/
public static int solve2(int[] input) {
int bestSum = -Integer.MAX_VALUE;
for (int start = 0; start < input.length; start++) {
// Compute the sum of input[start, end] and update
// 'bestSum' if we found a new max subarray sum.
// Set the sum to initial input value to handle edge case
// of all the values being negative.
int sum = input[start];
bestSum = Math.max(sum, bestSum);
for (int end = start+1; end < input.length; end++) {
sum += input[end];
bestSum = Math.max(sum, bestSum);
}
}
return bestSum;
}
/**
* Solves the maximum subarray sum in O(N^3) time. The two indices
* 'start' and 'end' iterate over all possible N^2 index pairs, and
* a third loop with index 'mid' iterates between them to compute
* the sum of input[start, end].
*/
public static int solve3(int[] input) {
int bestSum = -Integer.MAX_VALUE;
for (int start = 0; start < input.length; start++) {
for (int end = start; end < input.length; end++) {
// Compute the sum of input[start, end] using a third loop
// with index 'mid'. Update 'bestSum' if we found a new
// max subarray sum.
// Set the sum to initial input value to handle edge case
// of all the values being negative.
int sum = input[start];
bestSum = Math.max(sum, bestSum);
for (int mid = start+1; mid < end; mid++) {
sum = Math.max(input[mid], input[mid] + sum);
bestSum = Math.max(sum, bestSum);
}
}
}
return bestSum;
}
public static void runTest(int[] input) {
System.out.printf("\n");
System.out.printf("Input: ");
for (int i = 0; i < input.length; i++) {
System.out.printf("%2d", input[i]);
if (i < input.length-1) {
System.out.printf(", ");
}
}
System.out.printf("\n");
int result = 0;
result = MaximumSubarraySum.solve1(input);
System.out.printf("solve1 result = %d\n", result);
result = MaximumSubarraySum.solve2(input);
System.out.printf("solve2 result = %d\n", result);
result = MaximumSubarraySum.solve3(input);
System.out.printf("solve3 result = %d\n", result);
}
public static void main(String argv[]) {
int[] test1 = { -2, -3, 4, -1, -2, -1, -5, -3 };
runTest(test1);
int[] test2 = { -2, -3, -4, -1, -2, -1, -5, 3 };
runTest(test2);
int[] test3 = { -2, -3, -4, -1, -2, -1, -5, -3 };
runTest(test3);
int[] test4 = { -2, -3, 4, -1, -2, 1, 5, -3 };
runTest(test4);
}
}
The output is:
Input: -2, -3, 4, -1, -2, -1, -5, -3
solve1 result = 4
solve2 result = 4
solve3 result = 4
Input: -2, -3, -4, -1, -2, -1, -5, 3
solve1 result = 3
solve2 result = 3
solve3 result = 3
Input: -2, -3, -4, -1, -2, -1, -5, -3
solve1 result = -1
solve2 result = -1
solve3 result = -1
Input: -2, -3, 4, -1, -2, 1, 5, -3
solve1 result = 7
solve2 result = 7
solve3 result = 7