You've done this:
union NumericType Values = { 10 }; // iValue = 10
printf("%d\n", Values.iValue);
Values.dValue = 3.1416;
How a compiler uses memory for this union is similar to using the variable with largest size and alignment (any of them if there are several), and reinterpret cast when one of the other types in the union is written/accessed, as in:
double dValue; // creates a variable with alignment & space
// as per "union Numerictype Values"
*reinterpret_cast<int*>(&dValue) = 10; // separate step equiv. to = { 10 }
printf("%d\n", *reinterpret_cast<int*>(dValue)); // print as int
dValue = 3.1416; // assign as double
printf("%d\n", *reinterpret_cast<int*>(dValue)); // now print as int
The problem is that in setting dValue to 3.1416 you've completely overwritten the bits that used to hold the number 10. The new value may appear to be garbage, but it's simply the result of interpreting the first (sizeof int) bytes of the double 3.1416, trusting there to be a useful int value there.
If you want the two things to be independent - so setting the double doesn't affect the earlier-stored int - then you should use a struct
/class
.
It may help you to consider this program:
#include <iostream>
void print_bits(std::ostream& os, const void* pv, size_t n)
{
for (int i = 0; i < n; ++i)
{
uint8_t byte = static_cast<const uint8_t*>(pv)[i];
for (int j = 0; j < 8; ++j)
os << ((byte & (128 >> j)) ? '1' : '0');
os << ' ';
}
}
union X
{
int i;
double d;
};
int main()
{
X x = { 10 };
print_bits(std::cout, &x, sizeof x);
std::cout << '\n';
x.d = 3.1416;
print_bits(std::cout, &x, sizeof x);
std::cout << '\n';
}
Which, for me, produced this output:
00001010 00000000 00000000 00000000 00000000 00000000 00000000 00000000
10100111 11101000 01001000 00101110 11111111 00100001 00001001 01000000
Crucially, the first half of each line shows the 32 bits that are used for iValue: note the 1010 binary in the least significant byte (on the left on an Intel CPU like mine) is 10 decimal. Writing 3.1416 changes the entire 64-bits to a pattern representing 3.1416 (see http://en.wikipedia.org/wiki/Double_precision_floating-point_format). The old 1010 pattern is overwritten, clobbered, an electromagnetic memory no more.