I'm looking at this:
numbers[item] = 2;
In this expression, you're using the item
variable like an index, as if it had the values 1
, 2
, 3
, 4
, etc. That's not how the foreach iteration variable works for C#. The only language I know that does it this way is Javascript.
Remember that foreach
and for
are not the same thing. Just about every other language, including C#, gives you the actual array values in the item
variable of a foreach
loop: 1
,4
, 3
, 5
etc. Now, these are integers, so you could try to use them as indexes. You can run the loop for a while like that... until you get to the value 7
. At this point, your array only has six values. You're trying to do this:
numbers[7] = 2;
for an array where the largest valid index you can use is 5
.
This is true even taking your modification of the array into account. Let's look at the array after each iteration through the loop:
{ 1, 4, 3, 5, 7, 9 } //initial state
{ 1, 2, 3, 5, 7, 9 } // after 1st iteration (index 0). Value at index 0 is 1, so item as index 1 is set to 2
{ 1, 2, 2, 5, 7, 9 } // after 2nd iteration (index 1). Value at index 1 is now 2, so item at index 2 is set to 2
{ 1, 2, 2, 5, 7, 9 } // after 3rd iteration (index 2). Value at index 2 is now 2, so item at index 2 is set to 2
{ 1, 2, 2, 5, 7, 2 } // after 4th iteration (index 3). Value at index 3 is 5, so item at index 5 is set to 2
// The 5th iteration (index 4). Value at index 4 is 7, which is beyond the end of the array
For the why of this... it sounds like you're used to a more dynamic language. Some these other languages, like php or Javascript, don't have real arrays at all in the pure computer science sense. Instead, they have collection types they'll call an array, but when you get down to it are really something different.
C# has real arrays, and real arrays have a fixed size. If what you really want is a collection, C# has collections, too. You can use List<T>
objects, for example, to get an array-like collection you can append to easily.
For the other languages, the results vary depending on what you're talking about, but for the most permissive the result of your 5th iteration is something like this:
{ 1, 2, 2, 5, 7, 2, ,2 }
Note the missing value at index 6. That kind of things leads to mistakes that slip through your tests and don't show up until run-time. You also need to start wondering just how densely or sparsely the array will be filled, because the best strategy for handling these arrays can vary wildly depending on your answer... everything from just a big backing array with empty nodes that the programmer has to know about all the way to Hashtables and Dictionaries. And, by the way, C# again has these options available to you.