I need to test if there's any memory leak in our application and monitor to see if memory usage increases too much while processing the requests. I'm trying to develop some code to make multiple simultaneous calls to our api/webservice method. This api method is not asynchronous and takes some time to complete its operation.
I've made a lot of research about Tasks, Threads and Parallelism, but so far I had no luck. The problem is, even after trying all the below solutions, the result is always the same, it appears to be processing only two requests at the time.
Tried:
-> Creating tasks inside a simple for loop and starting them with and without setting them with TaskCreationOptions.LongRunning
-> Creating threads inside a simple for loop and starting them with and without high priority
-> Creating a list of actions on a simple for loop and starting them using
Parallel.Foreach(list, options, item => item.Invoke)
-> Running directly inside a Parallel.For loop (below)
-> Running TPL methods with and without Options and TaskScheduler
-> Tried with different values for MaxParallelism and maximum threads
-> Checked this post too, but it didn't help either. (Could I be missing something?)
-> Checked some other posts here in Stackoverflow, but with F# solutions that I don't know how to properly translate them to C#. (I never used F#...)
(Task Scheduler class taken from msdn)
Here's the basic structure that I have:
public class Test
{
Data _data;
String _url;
public Test(Data data, string url)
{
_data = data;
_url = url;
}
public ReturnData Execute()
{
ReturnData returnData;
using(var ws = new WebService())
{
ws.Url = _url;
ws.Timeout = 600000;
var wsReturn = ws.LongRunningMethod(data);
// Basically convert wsReturn to my method return, with some logic if/else etc
}
return returnData;
}
}
sealed class ThreadTaskScheduler : TaskScheduler, IDisposable
{
// The runtime decides how many tasks to create for the given set of iterations, loop options, and scheduler's max concurrency level.
// Tasks will be queued in this collection
private BlockingCollection<Task> _tasks = new BlockingCollection<Task>();
// Maintain an array of threads. (Feel free to bump up _n.)
private readonly int _n = 100;
private Thread[] _threads;
public TwoThreadTaskScheduler()
{
_threads = new Thread[_n];
// Create unstarted threads based on the same inline delegate
for (int i = 0; i < _n; i++)
{
_threads[i] = new Thread(() =>
{
// The following loop blocks until items become available in the blocking collection.
// Then one thread is unblocked to consume that item.
foreach (var task in _tasks.GetConsumingEnumerable())
{
TryExecuteTask(task);
}
});
// Start each thread
_threads[i].IsBackground = true;
_threads[i].Start();
}
}
// This method is invoked by the runtime to schedule a task
protected override void QueueTask(Task task)
{
_tasks.Add(task);
}
// The runtime will probe if a task can be executed in the current thread.
// By returning false, we direct all tasks to be queued up.
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued)
{
return false;
}
public override int MaximumConcurrencyLevel { get { return _n; } }
protected override IEnumerable<Task> GetScheduledTasks()
{
return _tasks.ToArray();
}
// Dispose is not thread-safe with other members.
// It may only be used when no more tasks will be queued
// to the scheduler. This implementation will block
// until all previously queued tasks have completed.
public void Dispose()
{
if (_threads != null)
{
_tasks.CompleteAdding();
for (int i = 0; i < _n; i++)
{
_threads[i].Join();
_threads[i] = null;
}
_threads = null;
_tasks.Dispose();
_tasks = null;
}
}
}
And the test code itself:
private void button2_Click(object sender, EventArgs e)
{
var maximum = 100;
var options = new ParallelOptions
{
MaxDegreeOfParallelism = 100,
TaskScheduler = new ThreadTaskScheduler()
};
// To prevent UI blocking
Task.Factory.StartNew(() =>
{
Parallel.For(0, maximum, options, i =>
{
var data = new Data();
// Fill data
var test = new Test(data, _url); //_url is pre-defined
var ret = test.Execute();
// Check return and display on screen
var now = DateTime.Now.ToString("HH:mm:ss");
var newText = $"{Environment.NewLine}[{now}] - {ret.ReturnId}) {ret.ReturnDescription}";
AppendTextBox(newText, ref resultTextBox);
}
}
public void AppendTextBox(string value, ref TextBox textBox)
{
if (InvokeRequired)
{
this.Invoke(new ActionRef<string, TextBox>(AppendTextBox), value, textBox);
return;
}
textBox.Text += value;
}
And the result that I get is basically this:
[10:08:56] - (0) OK
[10:08:56] - (0) OK
[10:09:23] - (0) OK
[10:09:23] - (0) OK
[10:09:49] - (0) OK
[10:09:50] - (0) OK
[10:10:15] - (0) OK
[10:10:16] - (0) OK
etc
As far as I know there's no limitation on the server side. I'm relatively new to the Parallel/Multitasking world. Is there any other way to do this? Am I missing something?
(I simplified all the code for clearness and I believe that the provided code is enough to picture the mentioned scenarios. I also didn't post the application code, but it's a simple WinForms screen just to call and show results. If any code is somehow relevant, please let me know, I can edit and post it too.)
Thanks in advance!
EDIT1: I checked on the server logs that it's receiving the requests two by two, so it's indeed something related to sending them, not receiving. Could it be a network problem/limitation related to how the framework manages the requests/connections? Or something with the network at all (unrelated to .net)?
EDIT2: Forgot to mention, it's a SOAP webservice.
EDIT3: One of the properties that I send (inside data) needs to change for each request.
EDIT4: I noticed that there's always an interval of ~25 secs between each pair of request, if it's relevant.