You won't find anything builtin that handles such a case. You'd have to create one yourself. Depending on how robust you need this to be, you could take a number of approaches.
The main hurdle you'll come across is how you'll generate the key type. In an ideal situation, the new keys that are generated would have their own distinct type. But it would have to be dynamically generated.
Alternatively, you could use another type that could hold multiple distinct values and still could be suitably used as the key. Problem here is that it will still have to be dynamically generated, but you will be using existing types.
A different approach you could take that doesn't involve generating new types, would be to use the existing source type, but reset the excluded properties to their default values (or not set them at all). Then they would have no effect on the grouping. This assumes you can create instances of this type and modify its values.
public static class Extensions
{
public static IQueryable<IGrouping<TSource, TSource>> GroupByExcept<TSource, TXKey>(this IQueryable<TSource> source, Expression<Func<TSource, TXKey>> exceptKeySelector) =>
GroupByExcept(source, exceptKeySelector, s => s);
public static IQueryable<IGrouping<TSource, TElement>> GroupByExcept<TSource, TXKey, TElement>(this IQueryable<TSource> source, Expression<Func<TSource, TXKey>> exceptKeySelector, Expression<Func<TSource, TElement>> elementSelector)
{
return source.GroupBy(BuildKeySelector(), elementSelector);
Expression<Func<TSource, TSource>> BuildKeySelector()
{
var exclude = typeof(TXKey).GetProperties()
.Select(p => (p.PropertyType, p.Name))
.ToHashSet();
var itemExpr = Expression.Parameter(typeof(TSource));
var keyExpr = Expression.MemberInit(
Expression.New(typeof(TSource).GetConstructor(Type.EmptyTypes)),
from p in typeof(TSource).GetProperties()
where !exclude.Contains((p.PropertyType, p.Name))
select Expression.Bind(p, Expression.Property(itemExpr, p))
);
return Expression.Lambda<Func<TSource, TSource>>(keyExpr, itemExpr);
}
}
}
Then to use it you would do this:
sampleCollection.GroupByExcept(x => new { x.N2, x.N5 })...
But alas, this approach won't work under normal circumstances. You won't be able to create new instances of the type within a query (unless you're using Linq to Objects).
If you're using Roslyn, you could generate that type as needed, then use that object as your key. Though that'll mean you'll need to generate the type asynchronously. So you probably will want to separate this from your query all together and just generate the key selector.
public static async Task<Expression<Func<TSource, object>>> BuildExceptKeySelectorAsync<TSource, TXKey>(Expression<Func<TSource, TXKey>> exceptKeySelector)
{
var exclude = typeof(TXKey).GetProperties()
.Select(p => (p.PropertyType, p.Name))
.ToHashSet();
var properties =
(from p in typeof(TSource).GetProperties()
where !exclude.Contains((p.PropertyType, p.Name))
select p).ToList();
var targetType = await CreateTypeWithPropertiesAsync(
properties.Select(p => (p.PropertyType, p.Name))
);
var itemExpr = Expression.Parameter(typeof(TSource));
var keyExpr = Expression.New(
targetType.GetConstructors().Single(),
properties.Select(p => Expression.Property(itemExpr, p)),
targetType.GetProperties()
);
return Expression.Lambda<Func<TSource, object>>(keyExpr, itemExpr);
async Task<Type> CreateTypeWithPropertiesAsync(IEnumerable<(Type type, string name)> properties) =>
(await CSharpScript.EvaluateAsync<object>(
AnonymousObjectCreationExpression(
SeparatedList(
properties.Select(p =>
AnonymousObjectMemberDeclarator(
NameEquals(p.name),
DefaultExpression(ParseTypeName(p.type.FullName))
)
)
)
).ToFullString()
)).GetType();
}
To use this:
sampleCollection.GroupBy(
await BuildExceptKeySelector((CollectionType x) => new { x.N2, x.N5 })
).Select(....);