I have the following dataframe :
Daily_KWH_System year month day hour minute second
0 4136.900384 2016 9 7 0 0 0
1 3061.657187 2016 9 8 0 0 0
2 4099.614033 2016 9 9 0 0 0
3 3922.490275 2016 9 10 0 0 0
4 3957.128982 2016 9 11 0 0 0
5 4177.014316 2016 9 12 0 0 0
6 3077.103445 2016 9 13 0 0 0
7 4123.103795 2016 9 14 0 0 0
.. ... ... ... ... ... ... ...
551 NaN 2016 11 23 0 0 0
552 NaN 2016 11 24 0 0 0
553 NaN 2016 11 25 0 0 0
.. ... ... ... ... ... ... ...
579 NaN 2016 11 27 0 0 0
580 NaN 2016 11 28 0 0 0
The variables type is as follows:
print(df.dtypes)
Daily_KWH_System object
year int32
month int32
day int32
hour int32
minute int32
second int32
I need to convert "Daily_KWH_System" to Float, so that I use in Linear Regression model.
I tried the below code, which worked fine.
df['Daily_KWH_System'] = pd.to_numeric(df['Daily_KWH_System'], errors='coerce')
Then I replaced the NaN's to Blank space, to use in my model. And I used the following code
df = df.replace(np.nan,' ', regex=True)
But, again the variable " Daily_KWH_System" is getting converted to Object as soon as i replace NaN'.
Please let me know how to go about it