The title field isn't long enough to a capture a detailed question, so for the record, my actual question defines "unreasonable" in a specific way:
Is it legal1 for a C implementation have an arithmetic right shift operator that returns different results, over time, for the identical argument values? That is, must
>>
be a true function?
Imagine you wanted to write portable code using right-shift >>
on signed values in C. Unfortunately, for you, the most efficient implementation of some critical part of your algorithm is fastest when signed right shifts fill the sign bit (i.e., they are arithmetic right shifts). Now since this behavior is implementation defined you are kind of screwed if you want to write portable code that takes advantage of it.
Just reading the compiler's documentation (which it is required to provide in the standard, but may or may not actually be easy to access or even exist) is great if you know all the compilers you will run on and will ever run on, but since that is often impossible, you might look for a way to do this portably.
One way I thought of is to simply test the compiler's behavior at runtime: it it appears to implement arithmetic2 right shift, use the optimized algorithm, but if not use a fallback that doesn't rely on it. Of course, just checking that say (short)0xFF00 >> 4 == 0xFFF0
isn't enough since it doesn't exclude that perhaps char
or int
values work differently, or even the weird case that it fills for some shift amounts or values but not for others3.
So given that a comprehensive approach would be to exhaustively check all shift values and amounts. For all 8-bit char
inputs that's only 28 LHS values and 23 RHS values for a total of 211, while short
(typically, but let's say int16_t
if you want to be pedantic) totals only 220, which could be validated in a fraction of a second on modern hardware4. Doing all 237 32-bit values would take a few seconds on decent hardware, but still possibly reasonable. 64-bit is out for the foreseeable future however.
Let's say you did that and found that the >>
behavior exactly matches the desired arithmetic shift behavior. Are you safe to rely on it according to the standard: does the standard constrain the implementation not to change its behavior at runtime? That is, does the behavior have to be expressible as a function of it's inputs, or can (short)0xFF00 >> 4
be 0xFFF0
one moment and then 0x0FF0
(or any other value) the next?
Now this question is mostly theoretical, but violating this probably isn't as crazy as it might seem, given the presence of hybrid architectures such as big.LITTLE that dynamically move processes from on CPU to another with possible small behavioral differences, or live VM migration between say chips manufactured by Intel and AMD with subtle (usually undocumented) instruction behavior differences.
1 By "legal" I mean according to the C standard, not according to the laws of your country, of course.
2 I.e., it replicates the sign bit for newly shifted in bits.
3 That would be kind of insane, but not that insane: x86 has different behavior (overflow flag bit setting) for shifts of 1 rather than other shifts, and ARM masks the shift amount in a surprising way that a simple test probably wouldn't detect.
4 At least anything better than a microcontroller. The inner validation loop is a few simple instructions, so a 1 GHz CPU could validate all ~1 million short values in ~1 ms at one instruction-per-cycle.