I'm trying to improve performance from this code by vectorizing this function:
inline float calcHaarPattern( const int* origin, const SurfHF* f, int n )
{
double d = 0;
for( int k = 0; k < n; k++ )
d += (origin[f[k].p0] + origin[f[k].p3] - origin[f[k].p1] - origin[f[k].p2])*f[k].w;
return (float)d;
}
From my knowledge, you can vectorize loops that involves exactly one math operation. In the code above we have 5 math operations, so (using OMP):
#pragma omp simd
for( int k = 0; k < n; k++ )
d += (origin[f[k].p0] + origin[f[k].p3] - origin[f[k].p1] - origin[f[k].p2])*f[k].w;
Isn't gonna work. However, I was thinking if breaking the loop above into multiple loops with exactly one math operation is a good practice for vectorization? The resulting code would be:
double p0[n], p3[n], p1[n], p2[n];
#pragma omp simd
for( int k = 0; k < n; k++ )
p0[k] = origin[f[k].p0]*f[k].w;
#pragma omp simd
for( int k = 0; k < n; k++ )
p3[k] = origin[f[k].p3]*f[k].w;
#pragma omp simd
for( int k = 0; k < n; k++ )
p1[k] = origin[f[k].p1]*f[k].w;
#pragma omp simd
for( int k = 0; k < n; k++ )
p2[k] = origin[f[k].p2]*f[k].w;
#pragma omp simd
for( int k = 0; k < n; k++ )
d += p0[k];
#pragma omp simd
for( int k = 0; k < n; k++ )
d -= p1[k];
#pragma omp simd
for( int k = 0; k < n; k++ )
d -= p2[k];
#pragma omp simd
for( int k = 0; k < n; k++ )
d += p3[k];
Is this a good solution, or there is any better? Modern compilers (say gcc
) are going to do this (or better) kind of optimizations (e.g. enabling -O3
) by themselves (so there is actually no gain in performance)?