THESE AREN'T THE MATHS YOU'RE LOOKING FOR
The function R*0.2126+ G*0.7152+ B*0.0722 is said to calculate the perceived brightness (or equivalent grayscale color) for a given an RGB color.
No this is incorrect, or at least incomplete. Yes, R*0.2126+ G*0.7152+ B*0.0722 are the spectral coefficients, but that is not the complete story.
First, Don't use the term brightness in this context. Brightness is not a measure of light, it is a perception, not a measurable quantity. When we are talking about light and colorimetry, use the term "luminance" (L or Y). Luminance is a linear measure of light, not perception.
Perceptual lightness, or L* (Lstar) from CIELAB, is based on human perception of changes in luminance. It is close to a power curve of about 0.43.
sRGB, the colorspace typically used for computer monitors and the web, is not linear like light, and it is also not exactly like the perceptual L* curve. sRGB's transfer curve is close to a 1/2.2 power curve. That is, the sRGB data/signal is raised to the power of 0.455, and then the monitor applies a power of 2.2.
WHAT'S BROKEN
Your math isn't working because you are not taking the transfer curves into account. You must linearize the sRGB values before applying the coefficients. Then the sum of these will equal a luminance of 1.
#FFFF00 in sRGB equals 0.9278 in luminance, but this is an sRGB value of 96.76% or an L* value of 97.14%
#0000FF in sRGB equals 0.0722 in luminance, but this is an sRGB value of 29.79% or an L* value of 32.3%
Here's a chart of some values, expanding on your example:

So to answer the rest of your question, to get a blue that matches a higher luminance than the monitor is capable of requires desaturating it, adding R and G to increase the lightness.
In this chart, we have the fully saturated but darker red and green to match the 7% blue luminance, then we have 18% luminance (as in an 18% grey card), and here we have to desaturate the blue to bring the luminance value up.
HOW TO CALC
First, you need to linearize the sRGB components, and THEN apply the coefficients, if you need to determine luminance. If you come up with some values doing math on linearized components, then you need to re-gamma encode to get back to sRGB.
I've discussed this is several other answers, such as this here.