New to C programming, and I've been told to avoid unions which in general makes perfect sense and I agree with. However, as part of an academic exercise I'm writing an emulator for hardware single-precision floating point addition by doing bit manipulation operations on unsigned 32-bit integers. I only mention that to explain why I want to use unions; I'm having no trouble with the emulation.
In order to test this emulator, I wrote a test program. But of course I'm trying to find the bit representation of floats on my hardware, so I thought this could be the perfect use for a union. I wrote this union:
typedef union {
float floatRep;
uint32_t unsignedIntRep;
} FloatExaminer;
This way, I can initialize a float with the floatRep
member and then examine the bits with the unsignedIntRep
member.
This worked most of the time, but when I got to NaN
addition, I started running into trouble. The exact situation was that I wrote a function to automate these tests. The gist of it was this:
void addTest(float op1, float op2){
FloatExaminer result;
result.floatRep = op1 + op2;
printf("%f + %f = %f\n", op1, op2, result.floatRep);
//print bit pattern as well
printf("Bit pattern of result: %08x", result.unsignedIntRep);
}
OK, now for the confusing part:
I added a NAN
and a NAN
with different mantissa bit patterns to differentiate between the two. On my particular hardware, it's supposed to return the second NAN
operand (making it quiet if it was signalling). (I'll explain how I know this below.) However, passing the bit patterns op1=0x7fc00001, op2=0x7fc00002
would return op1, 0x7fc00001
, every time!
I know it's supposed to return the second operand because I tried--outside the function--initializing as an integer and casting to a float as below:
uint32_t intRep1 = 0x7fc00001;
uint32_t intRep2 = 0x7fc00002;
float *op1 = (float *) &intRep1;
float *op2 = (float *) &intRep2;
float result = *op1 + *op2;
uint32_t *intResult = (uint32_t *)&result;
printf("%08x", *intResult); //bit pattern 0x7fc00002
In the end, I've concluded that unions are evil and I should never use them. However, does anyone know why I'm getting the result I am? Did I make stupid mistake or assumption? (I understand that hardware architecture varies, but this just seems bizarre.)