As you are a newbie, Ill try to give some directions instead of posting an answer. Mainly because this is not a "code this for me" platform.
Python has a library called csv, that allows to read data from CSV files (Boom!, surprised?). This library allows you to read the file. Start by reading the file (preferably an example file that you create with just 10 or so rows and then increase the amount of rows or use a for loop to iterate over different files). The examples in the bottom of the page that I linked will help you printing this info.
As you will see, the output you get from this library is a list with all the elements of each row. Your next step should be extracting just the ID that you are interested in.
Next logical step is counting the amount of appearances. There is also a class from the standard library called counter. They have a method called update
that you can use as follows:
from collections import Counter
c = Counter()
c.update(['safddsfasdf'])
c # Counter({'safddsfasdf': 1})
c['safddsfasdf'] # 1
c.update(['safddsfasdf'])
c # Counter({'safddsfasdf': 2})
c['safddsfasdf'] # 2
c.update(['fdf'])
c # Counter({'safddsfasdf': 2, 'fdf': 1})
c['fdf'] # 1
So basically you will have to pass it a list with the elements you want to count (you could have more than 1 id in the list, for exampling reading 10 IDs before inserting them, for improved efficiency, but remember not constructing a thousands of elements list if you are seeking good memory behaviour).
If you try this and get into some trouble come back and we will help further.
Edit
Spoiler alert: I decided to give a full answer to the problem, please avoid it if you want to find your own solution and learn Python in the progress.
# The csv module will help us read and write to the files
from csv import reader, writer
# The collections module has a useful type called Counter that fulfills our needs
from collections import Counter
# Getting the names/paths of the files is not this question goal,
# so I'll just have them in a list
files = [
"file_1.csv",
"file_2.csv",
]
# The output file name/path will also be stored in a variable
output = "output.csv"
# We create the item that is gonna count for us
appearances = Counter()
# Now we will loop each file
for file in files:
# We open the file in reading mode and get a handle
with open(file, "r") as file_h:
# We create a csv parser from the handle
file_reader = reader(file_h)
# Here you may need to do something if your first row is a header
# We loop over all the rows
for row in file_reader:
# We insert the id into the counter
appearances.update(row[:1])
# row[:1] will get explained afterwards, it is the first column of the row in list form
# Now we will open/create the output file and get a handle
with open(output, "w") as file_h:
# We create a csv parser for the handle, this time to write
file_writer = writer(file_h)
# If you want to insert a header to the output file this is the place
# We loop through our Counter object to write them:
# here we have different options, if you want them sorted
# by number of appearances Counter.most_common() is your friend,
# if you dont care about the order you can use the Counter object
# as if it was a normal dict
# Option 1: ordered
for id_and_times in apearances.most_common():
# id_and_times is a tuple with the id and the times it appears,
# so we check the second element (they start at 0)
if id_and_times[1] == 1:
# As they are ordered, we can stop the loop when we reach
# the first 1 to finish the earliest possible.
break
# As we have ended the loop if it appears once,
# only duplicate IDs will reach to this point
file_writer.writerow(id_and_times)
# Option 2: unordered
for id_and_times in apearances.iteritems():
# This time we can not stop the loop as they are unordered,
# so we must check them all
if id_and_times[1] > 1:
file_writer.writerow(id_and_times)
I offered 2 options, printing them ordered (based on Counter.most_common() doc) and unoredered (based on normal dict method dict.iteritems()). Choose one. From a speed point of view I'm not sure which one would be faster, as one first needs to order the Counter but also stops looping when finding the first element non-duplicated while the second doesn't need to order the elements but needs to loop every ID. The speed will probably be dependant on your data.
About the row[:1]
thingy:
row
is a list
- You can get a subset of a list telling the initial and final positions
- In this case the initial position is omited, so it defaults to the start
- The final position is 1, so just the first element gets selected
- So the output is another list with just the first element
row[:1] == [row[0]]
They have the same output, getting a sublist of only the same element is the same that constructing a new list with only the first element