Here is a char
wrapper class called Char
. The two examples in main()
demonstrate that you can use Char
-typed values just like you would char
values, except that Char
has a [] operator, for getting its value's bit at some given index.
#include <iostream>
class Char {
char c;
public:
Char() = default;
Char(const Char&) = default;
Char(char src) : c(src) {}
Char& operator = (char src) { c = src; return *this; }
operator const char& () const { return c; }
operator char& () { return c; }
// Special [] operator
// This is read-only -- making a writable (non-const)
// version is possible, but more complicated.
template <typename I>
bool operator [](I bit_idx) const { return !!(c & (char(1) << bit_idx)); }
};
int main() {
// Example 1
// Initialize a new Char value, just like using char.
Char my_char = 'x';
// Math operators work as expected
++my_char;
// And cout will produce the same output as a char value
std::cout << "Bit 3 of '" << my_char << "' is ";
// But unlike a char, the [] operator gives you
// the bit at an index, as a bool value.
std::cout << my_char[3] << "\n\n";
//Example 2
// Specify the Char type in a range-based for loop to
// iterate through an array of char values, as Char values.
const char str[] = "Tasty";
for(Char ch : str) {
// check if value is nonzero, the same as you would a char value
if(ch) {
// Send the value to cout,
// cast to an int to see the ASCII code
std::cout << ch << " (" << static_cast<int>(ch) << ") ";
// Count down from bit 7 to 0 and use
// the special [] operator to get each
// bit's value. Use this to output each
// value's binary digits.
for(int bit=7; bit>=0; --bit) {
std::cout << ch[bit];
}
std::cout << '\n';
}
}
}
Output:
Bit 3 of 'y' is 1
T (84) 01010100
a (97) 01100001
s (115) 01110011
t (116) 01110100
y (121) 01111001