Fun question. Here is my take -- let's see if I didn't goof anywhere!
To begin with, I will spell your signatures in (slightly less pseudo) Haskell:
return :: a -> PSet (r -> a)
(>>=) :: PSet (r -> a) -> (a -> PSet (r -> b)) -> PSet (r -> b))
Before continuing, it is worth mentioning two practical complications. Firstly, as you have already observed, thanks to Eq
and/or Ord
constraints it is non-trivial to give sets Functor
or Monad
instances; in any case, there are ways around it. Secondly, and more worryingly, with the type you propose for (>>=)
it is necessary to extract a
s from PSet (r -> a)
without having any obvious supply of r
s -- or, in other words, your (>>=)
demands a traversal of the function functor (->) r
. That, of course, is not possible in the general case, and tends to be impractical even when possible -- at least as far as Haskell is concerned. In any case, for our speculative purposes it is fine to suppose we can traverse (->) r
by applying the function to all possible r
values. I will indicate this through a hand-wavy universe :: PSet r
set, named in tribute to this package. I will also make use of an universe :: PSet (r -> b)
, and assume we can tell whether two r -> b
functions agree on a certain r
even without requiring an Eq
constraint. (The pseudo-Haskell is getting quite fake indeed!)
Preliminary remarks made, here are my pseudo-Haskell versions of your methods:
return :: a -> PSet (r -> a)
return x = singleton (const x)
(>>=) :: PSet (r -> a) -> (a -> PSet (r -> b)) -> PSet (r -> b))
m >>= f = unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (x r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
where
unionMap f = unions . map f
intersectionMap f = intersections . map f
Next, the monad laws:
m >>= return = m
return y >>= f = f y
m >>= f >>= g = m >>= \y -> f y >>= g
(By the way, when doing this sort of thing it is good to keep in mind the other presentations of the class we are working with -- in this case, we have join
and (>=>)
as alternatives to (>>=)
-- as switching presentations might make working with your instance of choice more pleasant. Here I will stick with the (>>=)
presentation of Monad
.)
Onwards to the first law...
m >>= return = m
m >>= return -- LHS
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (singleton (const (x r))))
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
const (x r) r == rb r)
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
x r == rb r)
(universe :: PSet (r -> b)))
(universe :: PSet r)) m
-- In other words, rb has to agree with x for all r.
unionMap (\x -> singleton x) m
m -- RHS
One down, two to go.
return y >>= f = f y
return y -- LHS
unionMap (\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (x r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)) (singleton (const y))
(\x ->
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (x r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)) (const y)
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f (const y r)))
(universe :: PSet (r -> b)))
(universe :: PSet r)
intersectionMap (\r ->
filter (\rb ->
any (\rb' -> rb' r == rb r) (f y)))
(universe :: PSet (r -> b)))
(universe :: PSet r)
-- This set includes all functions that agree with at least one function
-- from (f y) at each r.
return y >>= f
, therefore, might possibly be a much larger set than f y
. We have a violation of the second law; therefore, we don't have a monad -- at least not with the instance proposed here.
Appendix: here is an actual, runnable implementation of your functions, which is usable enough at least for playing with small types. It takes advantage of the aforementioned universe package.
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
module FunSet where
import Data.Universe
import Data.Map (Map)
import qualified Data.Map as M
import Data.Set (Set)
import qualified Data.Set as S
import Data.Int
import Data.Bool
-- FunSet and its would-be monad instance
newtype FunSet r a = FunSet { runFunSet :: Set (Fun r a) }
deriving (Eq, Ord, Show)
fsreturn :: (Finite a, Finite r, Ord r) => a -> FunSet r a
fsreturn x = FunSet (S.singleton (toFun (const x)))
-- Perhaps we should think of a better name for this...
fsbind :: forall r a b.
(Ord r, Finite r, Ord a, Ord b, Finite b, Eq b)
=> FunSet r a -> (a -> FunSet r b) -> FunSet r b
fsbind (FunSet s) f = FunSet $
unionMap (\x ->
intersectionMap (\r ->
S.filter (\rb ->
any (\rb' -> funApply rb' r == funApply rb r)
((runFunSet . f) (funApply x r)))
(universeF' :: Set (Fun r b)))
(universeF' :: Set r)) s
toFunSet :: (Finite r, Finite a, Ord r, Ord a) => [r -> a] -> FunSet r a
toFunSet = FunSet . S.fromList . fmap toFun
-- Materialised functions
newtype Fun r a = Fun { unFun :: Map r a }
deriving (Eq, Ord, Show, Functor)
instance (Finite r, Ord r, Universe a) => Universe (Fun r a) where
universe = fmap (Fun . (\f ->
foldr (\x m ->
M.insert x (f x) m) M.empty universe))
universe
instance (Finite r, Ord r, Finite a) => Finite (Fun r a) where
universeF = universe
funApply :: Ord r => Fun r a -> r -> a
funApply f r = maybe
(error "funApply: Partial functions are not fun")
id (M.lookup r (unFun f))
toFun :: (Finite r, Finite a, Ord r) => (r -> a) -> Fun r a
toFun f = Fun (M.fromList (fmap ((,) <$> id <*> f) universeF))
-- Set utilities
unionMap :: (Ord a, Ord b) => (a -> Set b) -> (Set a -> Set b)
unionMap f = S.foldl S.union S.empty . S.map f
-- Note that this is partial. Since for our immediate purposes the only
-- consequence is that r in FunSet r a cannot be Void, I didn't bother
-- with making it cleaner.
intersectionMap :: (Ord a, Ord b) => (a -> Set b) -> (Set a -> Set b)
intersectionMap f s = case ss of
[] -> error "intersectionMap: Intersection of empty set of sets"
_ -> foldl1 S.intersection ss
where
ss = S.toList (S.map f s)
universeF' :: (Finite a, Ord a) => Set a
universeF' = S.fromList universeF
-- Demo
main :: IO ()
main = do
let andor = toFunSet [uncurry (&&), uncurry (||)]
print andor -- Two truth tables
print $ funApply (toFun (2+)) (3 :: Int8) -- 5
print $ (S.map (flip funApply (7 :: Int8)) . runFunSet)
(fsreturn (Just True)) -- fromList [Just True]
-- First monad law demo
print $ fsbind andor fsreturn == andor -- True
-- Second monad law demo
let twoToFour = [ bool (Left False) (Left True)
, bool (Left False) (Right False)]
decider b = toFunSet
(fmap (. bool (uncurry (&&)) (uncurry (||)) b) twoToFour)
print $ fsbind (fsreturn True) decider == decider True -- False (!)