I have a script that takes multiple .csv files and outputs multiple line plots. I would like for these plots to be bar charts since they're showing rainfall. But I haven't been able to get plot.bar.()
to work. This is the code that works for me so far but it's not correct. Any help?
import pandas as pd
import time
import os
import matplotlib.pyplot as plt
files = ['w.pod.csv',
't.pod.csv',
'r.pod.csv',
'n.pod.csv',
'm.pod.csv',
'k.pod.csv',
'j.pod.csv',
'h.pod.csv',
'g.pod.csv',
'c.pod.csv',
'b.pod.csv']
for f in files:
fn = f.split('.')[0]
dat = pd.read_csv(f)
df0 = dat.loc[:, ['TimeStamp', 'RF']]
# Change time format
df0["time"] = pd.to_datetime(df0["TimeStamp"])
df0["day"] = df0['time'].map(lambda x: x.day)
df0["month"] = df0['time'].map(lambda x: x.month)
df0["year"] = df0['time'].map(lambda x: x.year)
df0.to_csv('{}_1.csv'.format(fn), na_rep="0") # write to csv
# Combine for daily rainfall
df1 = pd.read_csv('{}_1.csv'.format(fn), encoding='latin-1',
usecols=['day', 'month', 'year', 'RF', 'TimeStamp'])
df2 = df1.groupby(['day', 'month', 'year'], as_index=False).sum()
df2.to_csv('{}_2.csv'.format(fn), na_rep="0", header=None) # write to csv
# parse date
df3 = pd.read_csv('{}_2.csv'.format(fn), header=None, index_col='datetime',
parse_dates={'datetime': [1,2,3]},
date_parser=lambda x: pd.datetime.strptime(x, '%d %m %Y'))
def dt_parse(date_string):
dt = pd.datetime.strptime(date_string, '%d %m %Y')
return dt
# sort datetime
df4 = df3.sort()
final = df4.reset_index()
# rename columns
final.columns = ['date', 'bleh', 'rf']
final[['date','rf']].plot()
plt.suptitle('{} Rainfall 2015-2016'.format(fn), fontsize=20)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Rain / mm', fontsize=16)
plt.savefig('{}.png'.format(fn))
This is an extension of my previous question: Automate making multiple plots in python using several .csv files