The most likely candidates for high ratios of N/phi(N) are products of prime numbers. If you're just looking for one number with a ratio > 10, then you can generate primes and only check the product of primes up to the point where you get the desired ratio
def totientRatio(maxN,ratio=10):
primes = []
primeProd = 1
isPrime = [1]*(maxN+1)
p = 2
while p*p<=maxN:
if isPrime[p]:
isPrime[p*p::p] = [0]*len(range(p*p,maxN+1,p))
primes.append(p)
primeProd *= p
tot = primeProd
for f in primes:
tot -= tot//f
if primeProd/tot >= ratio:
return primeProd,primeProd/tot,len(primes)
p += 1 + (p&1)
output:
totientRatio(10**6)
16516447045902521732188973253623425320896207954043566485360902980990824644545340710198976591011245999110,
10.00371973209101,
55
This gives you the smallest number with that ratio. Multiples of that number will have the same ratio.
n = 16516447045902521732188973253623425320896207954043566485360902980990824644545340710198976591011245999110
n*2/totient(n*2) = 10.00371973209101
n*11*13/totient(n*11*13) = 10.00371973209101
No number will have a higher ratio until you reach the next product of primes (i.e. that number multiplied by the next prime).
n*263/totient(n*263) = 10.041901868473037
Removing a prime from the product affects the ratio by a proportion of (1-1/P).
For example if m = n/109, then m/phi(m) = n/phi(n) * (1-1/109)
(n//109) / totient(n//109) = 9.91194248684247
10.00371973209101 * (1-1/109) = 9.91194248684247
This should allow you to navigate the ratios efficiently and find the numbers that meed your need.
For example, to get a number with a ratio that is >= 10 but closer to 10, you can go to the next prime product(s) and remove one or more of the smaller primes to reduce the ratio. This can be done using combinations (from itertools) and will allow you to find very specific ratios:
m = n*263/241
m/totient(m) = 10.000234225865265
m = n*(263...839) / (7 * 61 * 109 * 137) # 839 is 146th prime
m/totient(m) = 10.000000079805726