I am creating a simple sequential Keras model which will take 10k inputs in a batch of 100. Each input has 3 columns and the corresponding output is sum of that row.
Sequential model has 2 layers- LSTM(Stateful=true) , Dense.
Now, after compiling and fitting the model, I am saving it in 'model.h5' file.
Then, I read the saved model, and call model.predict with a test data (size=10k , batch_size = 100).
Problem: the prediction doesn't work properly for first 400-500 inputs and for the rest its working perfectly fine with very low val_loss.
Case1: I make the LSTM layer Stateless(i.e. Stateful=False) In this case Keras is providing very accurate outputs for all the test data.
Case2: Instead of saving and then reading again, if I directly apply model.predict on the model created, all the outputs are coming accurately.
But, I need Stateful=True, also, I want to save my model and then resume work on that model later.
1.Is there any way to solve this?
2.Also, when I am providing test data, how is the model's accuracy increasing? ( because the first 400-500 tests provide inaccurate results and the rest are pretty accurate)