I want to aggregate data based on intervals on timestamp columns.
I saw that it takes 53 seconds for computation, but 5 minutes to write result in the CSV file. It seems like df.csv()
takes too much to write.
How can I optimize the code please ?
Here is my code snippet :
val df = spark.read.option("header",true).option("inferSchema", "true").csv("C:\\dataSet.csv\\inputDataSet.csv")
//convert all column to numeric value in order to apply aggregation function
df.columns.map { c =>df.withColumn(c, col(c).cast("int")) }
//add a new column inluding the new timestamp column
val result2=df.withColumn("new_time",((unix_timestamp(col("_c0"))/300).cast("long") * 300).cast("timestamp")).drop("_c0")
val finalresult=result2.groupBy("new_time").agg(result2.drop("new_time").columns.map(mean(_)).head,result2.drop("new_time").columns.map(mean(_)).tail: _*).sort("new_time")
finalresult.coalesce(1).write.option("header", "true").csv("C:/result_with_time.csv")//<= it took to much to write