I wish to run the training phase of my tensorflow code on my GPU while after I finish and store the results to load the model I created and run its test phase on CPU.
I have created this code (I have put a part of it, just for reference because it's huge otherwise, I know that the rules are to include a fully functional code and I apologise about that).
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn.python.ops import rnn_cell, rnn
# Import MNIST data http://yann.lecun.com/exdb/mnist/
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x_train = mnist.train.images
# Check that the dataset contains 55,000 rows and 784 columns
N,D = x_train.shape
tf.reset_default_graph()
sess = tf.InteractiveSession()
x = tf.placeholder("float", [None, n_steps,n_input])
y_true = tf.placeholder("float", [None, n_classes])
keep_prob = tf.placeholder(tf.float32,shape=[])
learning_rate = tf.placeholder(tf.float32,shape=[])
#[............Build the RNN graph model.............]
sess.run(tf.global_variables_initializer())
# Because I am using my GPU for the training, I avoid allocating the whole
# mnist.validation set because of memory error, so I gragment it to
# small batches (100)
x_validation_bin, y_validation_bin = mnist.validation.next_batch(batch_size)
x_validation_bin = binarize(x_validation_bin, threshold=0.1)
x_validation_bin = x_validation_bin.reshape((-1,n_steps,n_input))
for k in range(epochs):
steps = 0
for i in range(training_iters):
#Stochastic descent
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = binarize(batch_x, threshold=0.1)
batch_x = batch_x.reshape((-1,n_steps,n_input))
sess.run(train_step, feed_dict={x: batch_x, y_true: batch_y,keep_prob: keep_prob,eta:learning_rate})
if do_report_err == 1:
if steps % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 1.0})
# Calculate batch loss
loss = sess.run(total_loss, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 1.0})
print("Iter " + str(i) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy = " + "{:.5f}".format(acc))
steps += 1
# Validation Accuracy and Cost
validation_accuracy = sess.run(accuracy,feed_dict={x:x_validation_bin, y_true:y_validation_bin, keep_prob:1.0})
validation_cost = sess.run(total_loss,feed_dict={x:x_validation_bin, y_true:y_validation_bin, keep_prob:1.0})
validation_loss_array.append(final_validation_cost)
validation_accuracy_array.append(final_validation_accuracy)
saver.save(sess, savefilename)
total_epochs = total_epochs + 1
np.savez(datasavefilename,epochs_saved = total_epochs,learning_rate_saved = learning_rate,keep_prob_saved = best_keep_prob, validation_loss_array_saved = validation_loss_array,validation_accuracy_array_saved = validation_accuracy_array,modelsavefilename = savefilename)
After that, my model has been trained successfully and saved the relevant data, so I wish to load the file and do a final train and test part in the model but using my CPU this time. The reason is the GPU can't handle the whole dataset of mnist.train.images and mnist.train.labels.
So, manually I select this part and I run it:
with tf.device('/cpu:0'):
# Initialise variables
sess.run(tf.global_variables_initializer())
# Accuracy and Cost
saver.restore(sess, savefilename)
x_train_bin = binarize(mnist.train.images, threshold=0.1)
x_train_bin = x_train_bin.reshape((-1,n_steps,n_input))
final_train_accuracy = sess.run(accuracy,feed_dict={x:x_train_bin, y_true:mnist.train.labels, keep_prob:1.0})
final_train_cost = sess.run(total_loss,feed_dict={x:x_train_bin, y_true:mnist.train.labels, keep_prob:1.0})
x_test_bin = binarize(mnist.test.images, threshold=0.1)
x_test_bin = x_test_bin.reshape((-1,n_steps,n_input))
final_test_accuracy = sess.run(accuracy,feed_dict={x:x_test_bin, y_true:mnist.test.labels, keep_prob:1.0})
final_test_cost = sess.run(total_loss,feed_dict={x:x_test_bin, y_true:mnist.test.labels, keep_prob:1.0})
But I get an OMM GPU memory error, which it doesn't make sense to me since I think I have forced the program to rely on CPU. I did not put a command sess.close() in the first (training with batches) code, but I am not sure if this really the reason behind it. I followed this post actually for the CPU Any suggestions how to run the last part on CPU only?