I am using this New and improved code I corrected in order to solve this question I have.
I am using modular Exponentiation to use the formula [a^k mod n] to get my answer for an assignment I had to do where I was required to code it in two steps.
First int k must be converted to a binary
representation K consisting of a list of 0s and 1s. Second, Modular Exponentiation must be performed
using a
, n
and K[]
as arguments..
Earlier My code was incorrect and was able to correct it.
The Problem I now face is that when I google the online calculator for modular Exponentiation of 5^3 % 13
, it should == 8
The result that I get from my code is 5. I am trying to understand if there something minor I'm missing from the code or my math is wrong? Thanks
#include <iostream>
#include <vector>
using namespace std;
vector <int> BinaryK(int k);
int ModularExpo(int a, vector <int> & k, int n);
int main()
{
int a = 0;
int k = 0;
int n = 0;
cout << "a^k % n" << endl;
cout << "a = ";
cin >> a;
cout << "k = ";
cin >> k;
cout << "n = ";
cin >> n;
vector<int> B = BinaryK(k);
int result = ModularExpo(a, B, n);
cout << "a ^ k mod n == " << result << endl;
return 0;
}
// c == b^e % m
vector<int> BinaryK(int k)
{
vector<int> K; //hint: make K a vector
int tmp = k;
while (tmp > 0)
{
K.push_back(tmp % 2); //hint: use pushback
tmp = tmp / 2;
}
return K;
}
int ModularExpo(int a, vector<int> & K, int n)
{
if (n == 1)
return 0;
int b = 1;
if (K.size() == 0)
return b;
int A = a;
if (K[0] == 1)
b = a;
for (int i = 1; i < K.size() - 1; i++)
{
A = A * A % n;
if (K[i] == 1)
b = A*b % n;
}
return (b);
}