Often you want to send multiple values but due to low use (i.e. it is only used in one or two places), it's hard to justify creating a new type.
The Tuple<...>
and KeyValuePair<,>
type are very useful, but there isn't real language support for them.
Well sort of, a nice trick to use for Lists of tuples is to create a type that extends the List and adding a custom add method: e.g.
public class TupleList<T1,T2> : List<Tuple<T1,T2>>{
public void Add(T1 key, T2 value){
base.Add(Tuple.Create(key, value));
}
}
This means that if I have a method that takes an IEnumerable<Tuple<int,string>>
, I can use the following code to quickly build up the list like so::
Foo(new TupleList<int,string>{{1,"one"},{2,"two"},{3,"three"}});
This makes winding values into a tuple list easier as we don't have to constantly keep saying Tuple.Create
, and gets us almost to a nice functional languages syntax.
But when working with a tuple it is useful to unwind it out into its different components. This extension method might be useful in this respect::
public static void Unwind<T1,T2>(this Tuple<T1,T2> tuple,out T1 var1,out T2 var2)
{
var1 = tuple.Item1;
var2 = tuple.Item2;
}
But even that's annoying as out parameters are not variant at all. That is if T1 is a string, I can't send in an object variable even though they are assignable, when as I can do the unwinding by hand otherwise. I can't really suggest a reason why you might want this variance, but if its there, I can't see why you would want to lose it.
Anyone have other tips to making working tuples, or tuple like objects easier in C#?
An important potential use for tuples might be generic memoization. Which is very easy in languages like F#, but hard in C#.
I'm currently using Tuples to supply a MethodBase and an array of tokens (constants, objects, or argument tokens), supplied to a dynamicly built object to construct certain member fields.
Since I wanted to make the syntax easier on API consumers, I created Add methods that can take a ConstructorInfo
or a MethodInfo
and a params array of objects.
Edit: Eric Lippert as usual has excellent motivation for using Tuples here and he even says what I suspected there really is no support: What requirement was the tuple designed to solve?