So, we are a bit puzzled. In Jupyter Notebook we have the following data frame:
+--------------------+--------------+-------------+--------------------+--------+-------------------+
| created_at|created_at_int| screen_name| hashtags|ht_count| single_hashtag|
+--------------------+--------------+-------------+--------------------+--------+-------------------+
|2017-03-05 00:00:...| 1488672001| texanraj| [containers, cool]| 1| containers|
|2017-03-05 00:00:...| 1488672001| texanraj| [containers, cool]| 1| cool|
|2017-03-05 00:00:...| 1488672002| hubskihose|[automation, future]| 1| automation|
|2017-03-05 00:00:...| 1488672002| hubskihose|[automation, future]| 1| future|
|2017-03-05 00:00:...| 1488672002| IBMDevOps| [DevOps]| 1| devops|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| voiceofwipro|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| cloud|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| leader|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana| [Cloud, Cloud]| 1| cloud|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana| [Cloud, Cloud]| 1| cloud|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| voiceofwipro|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| cloud|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1|managedfiletransfer|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| asaservice|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| interconnect2017|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| hmi|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| cloud|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1|managedfiletransfer|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| asaservice|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| interconnect2017|
+--------------------+--------------+-------------+--------------------+--------+-------------------+
only showing top 20 rows
root
|-- created_at: timestamp (nullable = true)
|-- created_at_int: integer (nullable = true)
|-- screen_name: string (nullable = true)
|-- hashtags: array (nullable = true)
| |-- element: string (containsNull = true)
|-- ht_count: integer (nullable = true)
|-- single_hashtag: string (nullable = true)
We are trying to get the count of hashtags per hour. The approach we are taking is to use Window to partition by single_hashtag
. Something like this:
# create WindowSpec
hashtags_24_winspec = Window.partitionBy(hashtags_24.single_hashtag). \
orderBy(hashtags_24.created_at_int).rangeBetween(-3600, 3600)
However, when we try to do the sum of the ht_count
column using:
#sum_count_over_time = sum(hashtags_24.ht_count).over(hashtags_24_winspec)
we get the following error:
Column is not iterable
Traceback (most recent call last):
File "/usr/hdp/current/spark2-client/python/pyspark/sql/column.py", line 240, in __iter__
raise TypeError("Column is not iterable")
TypeError: Column is not iterable
The error message is not very informative and we are puzzled, which column exactly to investigate. Any ideas?