I have used the thread Call Python function from MATLAB and have implemented it successfully in Matlab.
However, the following code in python reflects no output in Matlab, and due to my lack of familiarity with Python, I can't see where the problem may originate from!
So here is the python code which takes a graph as input like :
bipartiteMatch({0:[0,1,3],1:[3,4],2:[1,2,4],3:[2,3,4],4:[0,2,3]})
and gives the set of maximum matchings in the form above,
# Hopcroft-Karp bipartite max-cardinality matching and max independent set
# David Eppstein, UC Irvine, 27 Apr 2002
#import sys
def bipartiteMatch(graph):
'''Find maximum cardinality matching of a bipartite graph (U,V,E).
The input format is a dictionary mapping members of U to a list
of their neighbors in V. The output is a triple (M,A,B) where M is a
dictionary mapping members of V to their matches in U, A is the part
of the maximum independent set in U, and B is the part of the MIS in V.
The same object may occur in both U and V, and is treated as two
distinct vertices if this happens.'''
# initialize greedy matching (redundant, but faster than full search)
matching = {}
for u in graph:
for v in graph[u]:
if v not in matching:
matching[v] = u
break
while 1:
# structure residual graph into layers
# pred[u] gives the neighbor in the previous layer for u in U
# preds[v] gives a list of neighbors in the previous layer for v in V
# unmatched gives a list of unmatched vertices in final layer of V,
# and is also used as a flag value for pred[u] when u is in the first layer
preds = {}
unmatched = []
pred = dict([(u,unmatched) for u in graph])
for v in matching:
del pred[matching[v]]
layer = list(pred)
# repeatedly extend layering structure by another pair of layers
while layer and not unmatched:
newLayer = {}
for u in layer:
for v in graph[u]:
if v not in preds:
newLayer.setdefault(v,[]).append(u)
layer = []
for v in newLayer:
preds[v] = newLayer[v]
if v in matching:
layer.append(matching[v])
pred[matching[v]] = v
else:
unmatched.append(v)
# did we finish layering without finding any alternating paths?
if not unmatched:
unlayered = {}
for u in graph:
for v in graph[u]:
if v not in preds:
unlayered[v] = None
return (matching,list(pred),list(unlayered))
# recursively search backward through layers to find alternating paths
# recursion returns true if found path, false otherwise
def recurse(v):
if v in preds:
L = preds[v]
del preds[v]
for u in L:
if u in pred:
pu = pred[u]
del pred[u]
if pu is unmatched or recurse(pu):
matching[v] = u
return 1
return 0
for v in unmatched: recurse(v)
I can see the output and run the code in python successfully, but the output is not shown in Matlab and returns " "
as the answer.
So any kind of help is extremely appreciated!