I have a dataframe with datetime index:df.head(6)
NUMBERES PRICE
DEAL_TIME
2015-03-02 12:40:03 5 25
2015-03-04 14:52:57 7 23
2015-03-03 08:10:09 10 43
2015-03-02 20:18:24 5 37
2015-03-05 07:50:55 4 61
2015-03-02 09:08:17 1 17
The dataframe includes the data of one week. Now I need to count the time period of the day. If time period is 1 hour, I know the following method would work:
df_grouped = df.groupby(df.index.hour).count()
But I don't know how to do when the time period is half hour. How can I realize it?
UPDATE:
I was told that this question is similar to How to group DataFrame by a period of time?
But I had tried the methods mentioned. Maybe it's my fault that I didn't say it clearly. 'DEAL_TIME' ranges from '2015-03-02 00:00:00' to '2015-03-08 23:59:59'. If I use pd.TimeGrouper(freq='30Min')
or resample()
, the time periods would range from '2015-03-02 00:30' to '2015-03-08 23:30'. But what I want is a series like below:
COUNT
DEAL_TIME
00:00:00 53
00:30:00 49
01:00:00 31
01:30:00 22
02:00:00 1
02:30:00 24
03:00:00 27
03:30:00 41
04:00:00 41
04:30:00 76
05:00:00 33
05:30:00 16
06:00:00 15
06:30:00 4
07:00:00 60
07:30:00 85
08:00:00 3
08:30:00 37
09:00:00 18
09:30:00 29
10:00:00 31
10:30:00 67
11:00:00 35
11:30:00 60
12:00:00 95
12:30:00 37
13:00:00 30
13:30:00 62
14:00:00 58
14:30:00 44
15:00:00 45
15:30:00 35
16:00:00 94
16:30:00 56
17:00:00 64
17:30:00 43
18:00:00 60
18:30:00 52
19:00:00 14
19:30:00 9
20:00:00 31
20:30:00 71
21:00:00 21
21:30:00 32
22:00:00 61
22:30:00 35
23:00:00 14
23:30:00 21
In other words, the time period should be irrelevant to the date.