If application does some heavy lifting with multiple file descriptors (e.g., opening - writing data - syncing - closing), what actually happens to Go runtime? Does it block all the goroutines at the time when expensive syscall occures (like syscall.Fsync
)? Or only the calling goroutine is blocked while the others are still operating?
So does it make sense to write programs with multiple workers that do a lot of user space - kernel space context switching? Does it make sense to use multithreading patterns for disk input?
package main
import (
"log"
"os"
"sync"
)
var data = []byte("some big data")
func worker(filenamechan chan string, wg *sync.waitgroup) {
defer wg.done()
for {
filename, ok := <-filenamechan
if !ok {
return
}
// open file is a quite expensive operation due to
// the opening new descriptor
f, err := os.openfile(filename, os.o_create|os.o_wronly, os.filemode(0644))
if err != nil {
log.fatal(err)
continue
}
// write is a cheap operation,
// because it just moves data from user space to the kernel space
if _, err := f.write(data); err != nil {
log.fatal(err)
continue
}
// syscall.fsync is a disk-bound expensive operation
if err := f.sync(); err != nil {
log.fatal(err)
continue
}
if err := f.close(); err != nil {
log.fatal(err)
}
}
}
func main() {
// launch workers
filenamechan := make(chan string)
wg := &sync.waitgroup{}
for i := 0; i < 2; i++ {
wg.add(1)
go worker(filenamechan, wg)
}
// send tasks to workers
filenames := []string{
"1.txt",
"2.txt",
"3.txt",
"4.txt",
"5.txt",
}
for i := range filenames {
filenamechan <- filenames[i]
}
close(filenamechan)
wg.wait()
}