I am writing an Apache Spark application using Scala. To handle and store data I use DataFrames. I have a nice pipeline with feature extraction and a MultiLayerPerceptron classifier, using the ML API.
I also want to use SVM (for comparison purposes). The thing is (and correct me if I am mistaken) only the MLLib provides SVM. And MLLib is not ready to handle DataFrames, only RDDs.
So I figured I can maintain the core of my application using DataFrames and to use SVM 1) I just convert the DataFrame's columns I need to an RDD[LabeledPoint]
and 2) after the classification add the SVMs prediction to the DataFrame as a new column.
The first part I handled with a small function:
private def dataFrameToRDD(dataFrame : DataFrame) : RDD[LabeledPoint] = {
val rddMl = dataFrame.select("label", "features").rdd.map(r => (r.getInt(0).toDouble, r.getAs[org.apache.spark.ml.linalg.SparseVector](1)))
rddMl.map(r => new LabeledPoint(r._1, Vectors.dense(r._2.toArray)))
}
I have to specify and convert the type of vector since the feature extraction method uses ML API and not MLLib.
Then, this RDD[LabeledPoint]
is fed to the SVM and classification goes smoothly, no issues. At the end and following spark's example I get an RDD[Double]
:
val predictions = rdd.map(point => model.predict(point.features))
Now, I want to add the prediction score as column to the original DataFrame and return it. This is where I got stuck. I can convert the RDD[Double]
to a DataFrame using
(sql context ommited)
import sqlContext.implicits._
val plDF = predictions.toDF("prediction")
But how do I join the two DataFrames where the second DataFrame becomes a column of the original one? I tried to use methods join
and union
but got SQL exceptions as the DataFrames have no equal columns to join or unite on.
EDIT I tried
data.withColumn("prediction", plDF.col("prediction"))
But I get an Analysis Exception :(