In an implementation of the Game of Life, I need to handle user events, perform some regular (as in periodic) processing and draw to a 2D canvas. The details are not particularly important. Suffice it to say that I need to keep track of a large(-ish) number of variables. These are things like: a structure representing the state of the system (live cells), pointers to structures provided by the graphics library, current zoom level, coordinates of the origin and I am sure a few others.
In the main function, there is a game loop like this:
// Setup stuff
while (!finished) {
while (get_event(&e) != 0) {
if (e.type == KEYBOARD_EVENT) {
switch (e.key.keysym) {
case q:
case x:
// More branching and nesting follows
The maximum level of nesting at the moment is 5. It quickly becomes unmanageable and difficult to read, especially on a small screen. The solution then is to split this up into multiple functions. Something like:
while (!finished {
while (get_event(&e) !=0) {
handle_event(state, origin_x, origin_y, &canvas, e...) //More parameters
This is the crux of the question. The subroutine must necessarily have access to the state (represented by the origin, the canvas, the live cells etc.) in order to function. Passing them all explicitly is error prone (which order does the subroutine expect them in) and can also be difficult to read. Aside from that, having functions with potentially 10+ arguments strikes me as a symptom of other design flaws. However the alternatives that I can think of, don't seem any better.
To summarise:
- Accept deep nesting in the game loop.
- Define functions with very many arguments.
- Collate (somewhat) related arguments into structs - This really only hides the problem, especially since the arguments are only loosely related.
- Define variables that represent the application state with file scope (
static int origin_x;
for example). If it weren't for the fact that it has been drummed into me that global variable are usually a terrible idea, this would be my preferred option. But if I want to display two views of the same instance of the Game of Life in the future, then the file scope no longer looks so appealing.
The question also applies in slightly more general terms I suppose: How do you pass state around a complicated program safely and in a readable way?
EDIT: My motivations here are not speed or efficiency or performance or anything like this. If the code takes 20% longer to run as a result of the choice made here that's just fine. I'm primarily interested in what is less likely to confuse me and cause the least headache in 6 months time.