Here is what I came up with from reading the docs, other similar solutions, and trial and error. It's a simple autoencoder on random data. If ran, then ran again, it will continue from where it left off (i.e. cost function on first run goes from ~0.5 -> 0.3 second run starts ~0.3). Unless I missed something, all of the saving, constructors, model building, add_to_collection there are needed and in a precise order, but there may be a simpler way.
And yes, loading the graph with import_meta_graph
isn't really needed here since the code is right above, but is what I want in my actual application.
from __future__ import print_function
import tensorflow as tf
import os
import math
import numpy as np
output_dir = "/root/Data/temp"
model_checkpoint_file_base = os.path.join(output_dir, "model.ckpt")
input_length = 10
encoded_length = 3
learning_rate = 0.001
n_epochs = 10
n_batches = 10
if not os.path.exists(model_checkpoint_file_base + ".meta"):
print("Making new")
brand_new = True
x_in = tf.placeholder(tf.float32, [None, input_length], name="x_in")
W_enc = tf.Variable(tf.random_uniform([input_length, encoded_length],
-1.0 / math.sqrt(input_length),
1.0 / math.sqrt(input_length)), name="W_enc")
b_enc = tf.Variable(tf.zeros(encoded_length), name="b_enc")
encoded = tf.nn.tanh(tf.matmul(x_in, W_enc) + b_enc, name="encoded")
W_dec = tf.transpose(W_enc, name="W_dec")
b_dec = tf.Variable(tf.zeros(input_length), name="b_dec")
decoded = tf.nn.tanh(tf.matmul(encoded, W_dec) + b_dec, name="decoded")
cost = tf.sqrt(tf.reduce_mean(tf.square(decoded - x_in)), name="cost")
saver = tf.train.Saver()
else:
print("Reloading existing")
brand_new = False
saver = tf.train.import_meta_graph(model_checkpoint_file_base + ".meta")
g = tf.get_default_graph()
x_in = g.get_tensor_by_name("x_in:0")
cost = g.get_tensor_by_name("cost:0")
sess = tf.Session()
if brand_new:
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
sess.run(init)
tf.add_to_collection("optimizer", optimizer)
else:
saver.restore(sess, model_checkpoint_file_base)
optimizer = tf.get_collection("optimizer")[0]
for epoch_i in range(n_epochs):
for batch in range(n_batches):
batch = np.random.rand(50, input_length)
_, curr_cost = sess.run([optimizer, cost], feed_dict={x_in: batch})
print("batch_cost:", curr_cost)
save_path = tf.train.Saver().save(sess, model_checkpoint_file_base)