Pretrained Fast Text Model Worked Best For My Similar Needs
I arrived at your question with a very similar need. I appreciated Martin Thoma's answer. However, I found the most help from Rabash's answer part 7 HERE.
After experimenting to find what worked best for my needs, which were making sure text files were in English in 60,000+ text files, I found that fasttext was an excellent tool.
With a little work, I had a tool that worked very fast over many files. Below is the code with comments. I believe that you and others will be able to modify this code for your more specific needs.
class English_Check:
def __init__(self):
# Don't need to train a model to detect languages. A model exists
# that is very good. Let's use it.
pretrained_model_path = 'location of your lid.176.ftz file from fasttext'
self.model = fasttext.load_model(pretrained_model_path)
def predictionict_languages(self, text_file):
this_D = {}
with open(text_file, 'r') as f:
fla = f.readlines() # fla = file line array.
# fasttext doesn't like newline characters, but it can take
# an array of lines from a file. The two list comprehensions
# below, just clean up the lines in fla
fla = [line.rstrip('\n').strip(' ') for line in fla]
fla = [line for line in fla if len(line) > 0]
for line in fla: # Language predict each line of the file
language_tuple = self.model.predictionict(line)
# The next two lines simply get at the top language prediction
# string AND the confidence value for that prediction.
prediction = language_tuple[0][0].replace('__label__', '')
value = language_tuple[1][0]
# Each top language prediction for the lines in the file
# becomes a unique key for the this_D dictionary.
# Everytime that language is found, add the confidence
# score to the running tally for that language.
if prediction not in this_D.keys():
this_D[prediction] = 0
this_D[prediction] += value
self.this_D = this_D
def determine_if_file_is_english(self, text_file):
self.predictionict_languages(text_file)
# Find the max tallied confidence and the sum of all confidences.
max_value = max(self.this_D.values())
sum_of_values = sum(self.this_D.values())
# calculate a relative confidence of the max confidence to all
# confidence scores. Then find the key with the max confidence.
confidence = max_value / sum_of_values
max_key = [key for key in self.this_D.keys()
if self.this_D[key] == max_value][0]
# Only want to know if this is english or not.
return max_key == 'en'
Below is the application / instantiation and use of the above class for my needs.
file_list = # some tool to get my specific list of files to check for English
en_checker = English_Check()
for file in file_list:
check = en_checker.determine_if_file_is_english(file)
if not check:
print(file)