Goal: I aim to use t-SNE (t-distributed Stochastic Neighbor Embedding) in R for dimensionality reduction of my training data (with N observations and K variables, where K>>N) and subsequently aim to come up with the t-SNE representation for my test data.
Example: Suppose I aim to reduce the K variables to D=2 dimensions (often, D=2 or D=3 for t-SNE). There are two R packages: Rtsne
and tsne
, while I use the former here.
# load packages
library(Rtsne)
# Generate Training Data: random standard normal matrix with J=400 variables and N=100 observations
x.train <- matrix(nrom(n=40000, mean=0, sd=1), nrow=100, ncol=400)
# Generate Test Data: random standard normal vector with N=1 observation for J=400 variables
x.test <- rnorm(n=400, mean=0, sd=1)
# perform t-SNE
set.seed(1)
fit.tsne <- Rtsne(X=x.train, dims=2)
where the command fit.tsne$Y
will return the (100x2)-dimensional object containing the t-SNE representation of the data; can also be plotted via plot(fit.tsne$Y)
.
Problem: Now, what I am looking for is a function that returns a prediction pred
of dimension (1x2) for my test data based on the trained t-SNE model. Something like,
# The function I am looking for (but doesn't exist yet):
pred <- predict(object=fit.tsne, newdata=x.test)
(How) Is this possible? Can you help me out with this?