I am interested in the performance of Pyomo to generate an OR model with a huge number of constraints and variables (about 10e6). I am currently using GAMS to launch the optimizations but I would like to use the different python features and therefore use Pyomo to generate the model.
I made some tests and apparently when I write a model, the python methods used to define the constraints are called each time the constraint is instanciated. Before going further in my implementation, I would like to know if there exists a way to create directly a block of constraints based on numpy array data ? From my point of view, constructing constraints by block may be more efficient for large models.
Do you think it is possible to obtain performance comparable to GAMS or other AML languages with pyomo or other python modelling library ?
Thanks in advance for your help !