from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
Hello I have the following list of comments:
comments = ['I am very agry','this is not interesting','I am very happy']
These are the corresponding labels:
sents = ['angry','indiferent','happy']
I am using tfidf to vectorize these comments as follows:
tfidf_vectorizer = TfidfVectorizer(analyzer='word')
tfidf = tfidf_vectorizer.fit_transform(comments)
from sklearn import preprocessing
I am using label encoder to vectorize the labels:
le = preprocessing.LabelEncoder()
le.fit(sents)
labels = le.transform(sents)
print(labels.shape)
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.model_selection import train_test_split
with open('tfidf.pickle','wb') as idxf:
pickle.dump(tfidf, idxf, pickle.HIGHEST_PROTOCOL)
with open('tfidf_vectorizer.pickle','wb') as idxf:
pickle.dump(tfidf_vectorizer, idxf, pickle.HIGHEST_PROTOCOL)
Here I am using passive aggressive to fit the model:
clf2 = PassiveAggressiveClassifier()
with open('passive.pickle','wb') as idxf:
pickle.dump(clf2, idxf, pickle.HIGHEST_PROTOCOL)
with open('passive.pickle', 'rb') as infile:
clf2 = pickle.load(infile)
with open('tfidf_vectorizer.pickle', 'rb') as infile:
tfidf_vectorizer = pickle.load(infile)
with open('tfidf.pickle', 'rb') as infile:
tfidf = pickle.load(infile)
Here I am trying to test the usage of partial fit as follows with three new comments and their corresponding labels:
new_comments = ['I love the life','I hate you','this is not important']
new_labels = [1,0,2]
vec_new_comments = tfidf_vectorizer.transform(new_comments)
print(clf2.predict(vec_new_comments))
clf2.partial_fit(vec_new_comments, new_labels)
The problem is that I am not getting the right results after the partial fit as follows:
print('AFTER THIS UPDATE THE RESULT SHOULD BE 1,0,2??')
print(clf2.predict(vec_new_comments))
however I am getting this output:
[2 2 2]
So I really appreciate support to find, why the model is not being updated if I am testing it with the same examples that it has used to be trained the desired output should be:
[1,0,2]
I would like to appreciate support to ajust maybe the hyperparameters to see the desired output.
this is the complete code, to show the partial fit:
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import sys
from sklearn.metrics.pairwise import cosine_similarity
import random
comments = ['I am very agry','this is not interesting','I am very happy']
sents = ['angry','indiferent','happy']
tfidf_vectorizer = TfidfVectorizer(analyzer='word')
tfidf = tfidf_vectorizer.fit_transform(comments)
#print(tfidf.shape)
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(sents)
labels = le.transform(sents)
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.model_selection import train_test_split
with open('tfidf.pickle','wb') as idxf:
pickle.dump(tfidf, idxf, pickle.HIGHEST_PROTOCOL)
with open('tfidf_vectorizer.pickle','wb') as idxf:
pickle.dump(tfidf_vectorizer, idxf, pickle.HIGHEST_PROTOCOL)
clf2 = PassiveAggressiveClassifier()
clf2.fit(tfidf, labels)
with open('passive.pickle','wb') as idxf:
pickle.dump(clf2, idxf, pickle.HIGHEST_PROTOCOL)
with open('passive.pickle', 'rb') as infile:
clf2 = pickle.load(infile)
with open('tfidf_vectorizer.pickle', 'rb') as infile:
tfidf_vectorizer = pickle.load(infile)
with open('tfidf.pickle', 'rb') as infile:
tfidf = pickle.load(infile)
new_comments = ['I love the life','I hate you','this is not important']
new_labels = [1,0,2]
vec_new_comments = tfidf_vectorizer.transform(new_comments)
clf2.partial_fit(vec_new_comments, new_labels)
print('AFTER THIS UPDATE THE RESULT SHOULD BE 1,0,2??')
print(clf2.predict(vec_new_comments))
However I got:
AFTER THIS UPDATE THE RESULT SHOULD BE 1,0,2??
[2 2 2]