There are couple of ways to improve upon that.
- You could extend your algorithm, but instead of doing a simple search for every term, you could do a binary search
t = a number
for (i = 0; i < A.length; i++)
j = binarySearch(A, t - A[i], i, A.length - 1)
if (j != null)
return true
return false
Binary search is done by O(log N) steps, since you perform a binary search per every element in the array, the complexity of the whole algorithm would be O(N*log N)
This already is a tremendous improvement upon O(N^2), but you can do better.
- Let's take the sum 11 and the array 1, 3, 4, 8, 9 for example.
You can already see that (3,8) satisfy the sum. To find that, imagine having two pointers, once pointing at the beginning of the array (1), we'll call it H and denote it with bold and another one pointing at the end of the array (9), we'll call it T and denote it with emphasis.
1 3 4 8 9
Right now the sum of the two pointers is 1 + 9 = 10.
10 is less than the desired sum (11), there is no way to reach the desired sum by moving the T pointer, so we'll move the H pointer right:
1 3 4 8 9
3 + 9 = 12 which is greater than the desired sum, there is no way to reach the desired sum by moving the H pointer, moving it right will further increase the sum, moving it left bring us to the initital state, so we'll move the T pointer left:
1 3 4 8 9
3 + 8 = 11 <-- this is the desired sum, we're done.
So the rules of the algorithm consist of moving the H pointer left or moving the T pointer right, we're finished when the sum of the two pointer is equal to the desired sum, or H and T crossed (T became less than H).
t = a number
H = 0
T = A.length - 1
S = -1
while H < T && S != t
S = A[H] + A[T]
if S < t
H++
else if S > t
T--
return S == t
It's easy to see that this algorithm runs at O(N) because we traverse each element at most once.