l have a dataset of 100, 000 images of different sizes.
(36,77), (56,100), (89,14), (35,67), (78,34), (90,65),(96,38).......
l want to add padding to these images so that to get them into the same shape.
To do so l loop over the whole dataset and take the max_width and max_height then make the images into this size.
In this sample for instance max_height= 96
and max_width= 100
. So my images will have all the shape of (96,100). However l get different shapes :
(96, 100, 3)
(97, 101, 3)
(97, 100, 3)
(96, 101, 3)
(96, 100, 3)
(97, 100, 3)
(97, 101, 3)
(97, 100, 3)
(97, 100, 3)
(96, 101, 3)
(97, 101, 3)
(96, 101, 3)
(96, 100, 3)
(97, 100, 3)
(96, 101, 3)
What's wrong with my code
from __future__ import division
import cv2
import numpy as np
import csv
import os
import pandas as pd
import glob
from matplotlib import pyplot as plt
def max_width_height(path):
os.chdir(path)
WIDTH=[]
HEIGHT=[]
images_name = glob.glob("*.png")
set_img = set([x.rsplit('.', 1)[0] for x in images_name])
for img in set_img:
img_cv = cv2.imread(path+'/'+img+'.png')
h=img_cv.shape[0]
w=img_cv.shape[1]
WIDTH.append(w)
HEIGHT.append(h)
max_width=max(WIDTH)
max_height=max(HEIGHT)
return max_height,max_width
def add_padding(max_height,max_width):
path_char = '/cropped_images'
output = 'dataset/'
abby_label = []
reference = []
os.chdir(path_char)
img_char= glob.glob("*.png")
set_img_char = set([x.rsplit('.', 1)[0] for x in img_char])
images = []
size= []
for img in img_char:
img_cv = cv2.imread(path_char+'/'+img)
h,w=img_cv.shape[0:2]
width_diff=max_width-w
height_diff=max_height-h
left= width_diff/2
right=width_diff/2
top=height_diff/2
bottom=height_diff/2
if isinstance(left,float):
left=int(left)
right=left+1
if isinstance(top,float):
top=int(top)
bottom=top+1
white_pixels = [255, 255, 255]
black_pixels = [0, 0, 0]
constant = cv2.copyMakeBorder(img_cv,top,left,right,bottom, cv2.BORDER_CONSTANT, value=white_pixels)
cv2.imwrite(output+img,constant)
size.append(constant.shape)
constant2 = cv2.copyMakeBorder(img_cv,top,left,right,bottom, cv2.BORDER_CONSTANT, value=black_pixels)
cv2.imwrite(output+img,constant2)
label, sep,rest = img.partition('_')
abby_label.append(label)
reference.append(rest)
df = pd.DataFrame({'abby_label': abby_label, 'reference': reference})
df.to_csv('abby_labels.csv')
df2=pd.DataFrame({'dimension':size})
df2.to_csv('dimension.csv')
h,w=max_width_height(path)
print(h,w)
x=add_padding(h,w)