The next my question is concerned with 95% CI, namely: I have many categories in dataset (3500) and now, some categories have small number of observations, so when i tried to calculate 95%CI i got the error.
mydata=read.csv(cher,sep=";",dec=",")
View(mydata)
confint <- function(x) t.test(x)$conf.int
c <- aggregate(. ~ group, data = mydata, confint)
Error in t.test.default (x): not enough observations 'x'
How to write string in this place, that this confint function would detect missing values of categories and just pass it, then calculate 95% CI for these categories where there are enough obs. Thank for your help me.
dput
example
price group
900000 Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
1750000 Mercedes-Benz-AXOR-2004
900000 Peterbilt-387-2002
Mercedes-Benz-AXOR-2004
Peterbilt-387-2002
Peterbilt-387-2002
Mercedes-Benz-AXOR-2004
Mercedes-Benz-AXOR-2004
Peterbilt-387-2002
1100000 Peterbilt-387-2002