It sounds like you have two challenges:
- It is expensive to calculate some variable values, so you want to avoid calculating values that aren't needed to evaluate the expression; and
- Your expression exists as a string, composed at runtime, so you can't use C++'s built-in short-circuiting logic.
This means you need some way to evaluate an expression at runtime, and you would like to take advantage of short-circuit logic if possible. Python could be a good choice for this, as shown in the example below.
There is a short Python script (evaluate.py
), which defines an evaluate()
function which can be called from your C or C++ program. The evaluate()
function will attempt to evaluate the expression you give it (translating "&&" and "||" to "and" and "or" if needed). If it requires a variable which hasn't been defined yet, it will retrieve a value for that variable by calling a get_var_value()
function defined in the C/C++ program (and then cache the value for later use).
This approach will use normal short-circuit behavior, so it will only request the variable values needed to finish evaluating the expression. Note that this won't rearrange the expression to choose the minimal set of variables needed to evaluate it; it just uses the standard short-circuiting behavior.
UPDATE: I've added an example at the end that defines the Python script using a multiline string literal in the .cpp file. This could be useful if you don't want to install a separate evaluate.py file along with your executable. It also simplifies the Python initialization a little bit.
The C/Python interaction in the scripts below is based on code in https://docs.python.org/2/extending/embedding.html and https://docs.python.org/2/c-api/arg.html.
Here are the files:
evaluate.py (Python script)
# load embedded_methods module defined by the parent C program
from embedded_methods import get_var_value
# define a custom dictionary class that calls get_var_value(key) for any missing keys.
class var_dict(dict):
def __missing__(self, var):
self[var] = val = get_var_value(var)
return val
# define a function which can be called by the parent C program
def evaluate(expr):
# Create a dictionary to use as a namespace for the evaluation (this version
# will automatically request missing variables).
# Move this line up to the module level to retain values between calls.
namespace = var_dict()
# convert C-style Boolean operators to Python-style
py_expr = expr.replace("||", " or ").replace("&&", " and ").replace(" ", " ")
print('evaluating expression "{}" as "{}"'.format(expr, py_expr))
# evaluate the expression, retrieving variable values as needed
return eval(py_expr, namespace)
evaluate.c (your main program; could also be evaluate.cpp, compiled with g++)
// on Mac, compile with gcc -o evaluate evaluate.c -framework Python
#include <Python/Python.h> // Mac
// #include <Python.h> // non-Mac?
// retain values of argc and argv for equation evaluation
int argc;
char **argv;
/*
Calculate the value of a named variable; this is called from the Python
script to obtain any values needed to evaluate the expression.
*/
static PyObject* c_get_var_value(PyObject *self, PyObject *args)
{
int var_num;
char *var_name;
char err_string[100];
long var_value;
if(!PyArg_ParseTuple(args, "s:get_var_value", &var_name)) {
PyErr_SetString(PyExc_ValueError, "Invalid arguments passed to get_var_value()");
return NULL;
}
// change the code below to define your variable values
// This version just assumes A, B, C are given by argv[2], argv[3], argv[4], etc.
printf("looking up value of %s: ", var_name);
var_num = var_name[0]-'A';
if (strlen(var_name) != 1 || var_num < 0 || var_num >= argc-2) {
printf("%s\n", "unknown");
snprintf(
err_string, sizeof(err_string),
"Value requested for unknown variable \"%s\"", var_name
);
PyErr_SetString(PyExc_ValueError, err_string);
return NULL; // will raise exception in Python
} else {
var_value = atoi(argv[2+var_num]);
printf("%ld\n", var_value);
return Py_BuildValue("l", var_value);
}
}
// list of methods to be added to the "embedded_methods" module
static PyMethodDef c_methods[] = {
{"get_var_value", c_get_var_value, METH_VARARGS, // could use METH_O
"Retrieve the value for the specified variable."},
{NULL, NULL, 0, NULL} // sentinel for end of list
};
int main(int ac, char *av[])
{
PyObject *p_module, *p_evaluate, *p_args, *p_result;
long result;
const char* expr;
// cache and evaluate arguments
argc = ac;
argv = av;
if (argc < 2) {
fprintf(
stderr,
"Usage: %s \"expr\" A B C ...\n"
"e.g., %s \"((A>0) && (B>5 || C > 10))\" 10 9 -1\n",
argv[0], argv[0]
);
return 1;
}
expr = argv[1];
// initialize Python
Py_SetProgramName(argv[0]);
Py_Initialize();
// Set system path to include the directory where this executable is stored
// (to find evaluate.py later)
PySys_SetArgv(argc, argv);
// attach custom module with get_var_value() function
Py_InitModule("embedded_methods", c_methods);
// Load evaluate.py
p_module = PyImport_ImportModule("evaluate");
if (PyErr_Occurred()) { PyErr_Print(); }
if (p_module == NULL) {
fprintf(stderr, "unable to load evaluate.py\n");
return 1;
}
// get a reference to the evaluate() function
p_evaluate = PyObject_GetAttrString(p_module, "evaluate");
if (!(p_evaluate && PyCallable_Check(p_evaluate))) {
fprintf(stderr, "Cannot retrieve evaluate() function from evaluate.py module\n");
return 1;
}
/*
Call the Python evaluate() function with the expression to be evaluated.
The evaluate() function will call c_get_var_value() to obtain any
variable values needed to evaluate the expression. It will use
caching and normal logical short-circuiting to reduce the number
of requests.
*/
p_args = Py_BuildValue("(s)", expr);
p_result = PyObject_CallObject(p_evaluate, p_args);
Py_DECREF(p_args);
if (PyErr_Occurred()) {
PyErr_Print();
return 1;
}
result = PyInt_AsLong(p_result);
Py_DECREF(p_result);
printf("result was %ld\n", result);
Py_DECREF(p_evaluate);
Py_DECREF(p_module);
return 0;
}
Results:
$ evaluate "((A>0) && (B>5 || C > 10))" -1 9 -1
evaluating expression "((A>0) && (B>5 || C > 10))" as "((A>0) and (B>5 or C > 10))"
looking up value of A: -1
result was 0
$ evaluate "((A>0) && (B>5 || C > 10))" 10 9 -1
evaluating expression "((A>0) && (B>5 || C > 10))" as "((A>0) and (B>5 or C > 10))"
looking up value of A: 10
looking up value of B: 9
result was 1
$ evaluate "((A>0) && (B>5 || C > 10))" 10 3 -1
evaluating expression "((A>0) && (B>5 || C > 10))" as "((A>0) and (B>5 or C > 10))"
looking up value of A: 10
looking up value of B: 3
looking up value of C: -1
result was 0
As an alternative, you can combine all this code into a single .cpp file, as shown below. This uses the multi-line string literal capability in C++11.
Self-contained evaluate.cpp
// on Mac, compile with g++ evaluate.cpp -o evaluate -std=c++11 -framework Python
#include <Python/Python.h> // Mac
//#include <Python.h> // non-Mac?
/*
Python script to be run in embedded interpreter.
This defines an evaluate(expr) function which will interpret an expression
and return the result. If any variable values are needed, it will call the
get_var_values(var) function defined in the parent C++ program
*/
const char* py_script = R"(
# load embedded_methods module defined by the parent C program
from embedded_methods import get_var_value
# define a custom dictionary class that calls get_var_value(key) for any missing keys.
class var_dict(dict):
def __missing__(self, var):
self[var] = val = get_var_value(var)
return val
# define a function which can be called by the parent C program
def evaluate(expr):
# Create a dictionary to use as a namespace for the evaluation (this version
# will automatically request missing variables).
# Move this line up to the module level to retain values between calls.
namespace = var_dict()
# convert C-style Boolean operators to Python-style
py_expr = expr.replace("||", " or ").replace("&&", " and ").replace(" ", " ")
print('evaluating expression "{}" as "{}"'.format(expr, py_expr))
# evaluate the expression, retrieving variable values as needed
return eval(py_expr, namespace)
)";
// retain values of argc and argv for equation evaluation
int argc;
char **argv;
/*
Calculate the value of a named variable; this is called from the Python
script to obtain any values needed to evaluate the expression.
*/
static PyObject* c_get_var_value(PyObject *self, PyObject *args)
{
int var_num;
char *var_name;
char err_string[100];
long var_value;
if(!PyArg_ParseTuple(args, "s:get_var_value", &var_name)) {
PyErr_SetString(PyExc_ValueError, "Invalid arguments passed to get_var_value()");
return NULL;
}
// change the code below to define your variable values
// This version just assumes A, B, C are given by argv[2], argv[3], argv[4], etc.
printf("looking up value of %s: ", var_name);
var_num = var_name[0]-'A';
if (strlen(var_name) != 1 || var_num < 0 || var_num >= argc-2) {
printf("%s\n", "unknown");
snprintf(
err_string, sizeof(err_string),
"Value requested for unknown variable \"%s\"", var_name
);
PyErr_SetString(PyExc_ValueError, err_string);
return NULL; // will raise exception in Python
} else {
var_value = atoi(argv[2+var_num]);
printf("%ld\n", var_value);
return Py_BuildValue("l", var_value);
}
}
// list of methods to be added to the "embedded_methods" module
static PyMethodDef c_methods[] = {
{"get_var_value", c_get_var_value, METH_VARARGS, // could use METH_O
"Retrieve the value for the specified variable."},
{NULL, NULL, 0, NULL} // sentinel for end of list
};
int main(int ac, char *av[])
{
PyObject *p_module, *p_evaluate, *p_args, *p_result;
long result;
const char* expr;
// cache and evaluate arguments
argc = ac;
argv = av;
if (argc < 2) {
fprintf(
stderr,
"Usage: %s \"expr\" A B C ...\n"
"e.g., %s \"((A>0) && (B>5 || C > 10))\" 10 9 -1\n",
argv[0], argv[0]
);
return 1;
}
expr = argv[1];
// initialize Python
Py_SetProgramName(argv[0]);
Py_Initialize();
// attach custom module with get_var_value() function
Py_InitModule("embedded_methods", c_methods);
// run script to define evalute() function
PyRun_SimpleString(py_script);
if (PyErr_Occurred()) {
PyErr_Print();
fprintf(stderr, "%s\n", "unable to run Python script");
return 1;
}
// get a reference to the Python evaluate() function (can be reused later)
// (note: PyRun_SimpleString creates objects in the __main__ module)
p_module = PyImport_AddModule("__main__");
p_evaluate = PyObject_GetAttrString(p_module, "evaluate");
if (!(p_evaluate && PyCallable_Check(p_evaluate))) {
fprintf(stderr, "%s\n", "Cannot retrieve evaluate() function from __main__ module");
return 1;
}
/*
Call the Python evaluate() function with the expression to be evaluated.
The evaluate() function will call c_get_var_value() to obtain any
variable values needed to evaluate the expression. It will use
caching and normal logical short-circuiting to reduce the number
of requests.
*/
p_args = Py_BuildValue("(s)", expr);
p_result = PyObject_CallObject(p_evaluate, p_args);
Py_DECREF(p_args);
if (PyErr_Occurred()) {
PyErr_Print();
return 1;
}
result = PyInt_AsLong(p_result);
Py_DECREF(p_result);
printf("result was %ld\n", result);
Py_DECREF(p_module);
Py_DECREF(p_evaluate);
return 0;
}