So there are a number of things to think about here.
The first point and quite possibly the largest in terms of performance is getting the data from DB2 into SAS. (I'm assuming this is not an in database instance of SAS -- correct me if it is). That's a big table and moving it across the wire takes time. Because of that, if you can calculate all these statistics inside DB2 with an SQL statement, that will probably be your fastest option.
So assuming you've downloaded the table to the SAS server:
A table sorted by the CLASS
variables will be MUCH faster to process than an unsorted table. If SAS knows the table is sorted, it doesn't have to scan the table for records to go into a group, it can do block reads instead of random IO.
If the table is not sorted, then the larger the number of groups, then more table scans that have to occur.
The point is, the speed of getting data from the HD to the CPU will be paramount in an unsorted process.
From there, you get into a memory and cpu issue. PROC SUMMARY is multithreaded and SAS will read N groups at a time. If group size can fit into the memory allocated for that thread, you won't have an issue. If the group size is too large, then SAS will have to page.
I scaled down the problem to a 15M row example:
%let grps=3000;
%let pergrp=5000;
UNSORTED:
NOTE: There were 15000000 observations read from the data set
WORK.TEST.
NOTE: The data set WORK.SUMMARY has 3001 observations and 9
variables.
NOTE: PROCEDURE SUMMARY used (Total process time):
real time 20.88 seconds
cpu time 31.71 seconds
SORTED:
NOTE: There were 15000000 observations read from the data set
WORK.TEST.
NOTE: The data set WORK.SUMMARY has 3001 observations and 9
variables.
NOTE: PROCEDURE SUMMARY used (Total process time):
real time 5.44 seconds
cpu time 11.26 seconds
=============================
%let grps=300000;
%let pergrp=50;
UNSORTED:
NOTE: There were 15000000 observations read from the data set
WORK.TEST.
NOTE: The data set WORK.SUMMARY has 300001 observations and 9
variables.
NOTE: PROCEDURE SUMMARY used (Total process time):
real time 19.26 seconds
cpu time 41.35 seconds
SORTED:
NOTE: There were 15000000 observations read from the data set
WORK.TEST.
NOTE: The data set WORK.SUMMARY has 300001 observations and 9
variables.
NOTE: PROCEDURE SUMMARY used (Total process time):
real time 5.43 seconds
cpu time 10.09 seconds
I ran these a few times and the run times were similar. Sorted times are about equal and way faster.
The more groups / less per group was faster unsorted, but look at the total CPU usage, it is higher. My laptop has an extremely fast SSD so IO was probably not the limiting factor -- the HD was able to keep up with the multi-core CPU's demands. On a system with a slower HD, the total run times could be different.
In the end, it depends too much on how the data is structured and the specifics of your server and DB.