I am running a logistic regression, with Gender as the predictor. My issue is that when including "School", which has levels A-X, into the model I obtain this in the summary output:
> glm.1=glm(Gender~Math.Scaled.Scores.2011+Math.Scaled.Scores.2012+Math.Scaled.Scores.2013+School, data= Ed, family=binomial)
> summary(glm.1)
Call:
glm(formula = Gender ~ Math.Scaled.Scores.2011 + Math.Scaled.Scores.2012 +
Math.Scaled.Scores.2013 + School, family = binomial, data = Ed)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.389 -1.212 1.058 1.138 1.376
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.331e-02 2.223e-01 0.150 0.8809
Math.Scaled.Scores.2011 -7.837e-04 5.401e-04 -1.451 0.1468
Math.Scaled.Scores.2012 5.279e-05 6.298e-04 0.084 0.9332
Math.Scaled.Scores.2013 9.878e-04 6.258e-04 1.579 0.1144
SchoolB 5.198e-03 2.091e-01 0.025 0.9802
SchoolC -3.341e-02 2.120e-01 -0.158 0.8748
SchoolD -6.354e-02 2.348e-01 -0.271 0.7867
SchoolE 9.032e-03 2.159e-01 0.042 0.9666
SchoolF -3.553e-01 2.322e-01 -1.530 0.1260
SchoolG -1.845e-01 2.325e-01 -0.794 0.4274
SchoolH -2.358e-01 2.308e-01 -1.022 0.3069
SchoolI 1.351e-02 2.162e-01 0.062 0.9502
SchoolJ 1.220e-01 2.395e-01 0.509 0.6105
SchoolK -3.845e-02 2.388e-01 -0.161 0.8721
SchoolL -1.637e-02 2.018e-01 -0.081 0.9354
SchoolML 1.051e-01 2.304e-01 0.456 0.6483
SchoolN 4.214e-02 2.310e-01 0.182 0.8552
SchoolO -1.764e-02 2.248e-01 -0.078 0.9374
SchoolP 3.455e-02 2.258e-01 0.153 0.8784
SchoolQ -2.496e-01 2.066e-01 -1.208 0.2270
SchoolR -4.046e-01 2.187e-01 -1.851 0.0642 .
SchoolS 1.483e-02 2.139e-01 0.069 0.9447
SchoolT -2.566e-01 2.334e-01 -1.100 0.2714
SchoolU -4.166e-02 2.088e-01 -0.199 0.8419
SchoolV -4.073e-01 2.246e-01 -1.813 0.0698 .
SchoolW 1.074e-03 2.203e-01 0.005 0.9961
SchoolX -1.056e-01 2.190e-01 -0.482 0.6298
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 5997.2 on 4327 degrees of freedom
Residual deviance: 5971.4 on 4301 degrees of freedom
AIC: 6025.4
Number of Fisher Scoring iterations: 3
It gives all the coeffiecients for each school, but I want it to be "School" in general as a whole, not schoolA-Schoolz. So it looks like I have 24 predictors of school, when I really only want 1.