5

I was trying to fit beta prime distribution to my data using python. As there's scipy.stats.betaprime.fit, I tried this:

import numpy as np
import math
import scipy.stats as sts
import matplotlib.pyplot as plt

N  = 5000
nb_bin = 100
a = 12; b = 106; scale = 36; loc = -a/(b-1)*scale
y = sts.betaprime.rvs(a,b,loc,scale,N)
a_hat,b_hat,loc_hat,scale_hat = sts.betaprime.fit(y)
print('Estimated parameters: \n a=%.2f, b=%.2f, loc=%.2f, scale=%.2f'%(a_hat,b_hat,loc_hat,scale_hat))

plt.figure()
count, bins, ignored = plt.hist(y, nb_bin, normed=True)
pdf_ini = sts.betaprime.pdf(bins,a,b,loc,scale)
pdf_est  = sts.betaprime.pdf(bins,a_hat,b_hat,loc_hat,scale_hat)
plt.plot(bins,pdf_ini,'g',linewidth=2.0,label='ini');plt.grid()
plt.plot(bins,pdf_est,'y',linewidth=2.0,label='est');plt.legend();plt.show()

It shows me the result that:

Estimated parameters:
 a=9935.34, b=10846.64, loc=-90.63, scale=98.93

which is quite different from the original one and the figure from the PDF:

enter image description here

If I give the real value of loc and scale as the input of fit function, the estimation result would be better. Has anyone worked on this part already or got a better solution?

dspencer
  • 4,297
  • 4
  • 22
  • 43
Fay
  • 105
  • 1
  • 5

0 Answers0