Suppose I have two Spark SQL dataframes A
and B
. I want to subtract the items in B
from the items in A
while preserving duplicates from A
.
I followed the instructions to use DataFrame.except()
that I found in another StackOverflow question ("Spark: subtract two DataFrames"), but that function removes all duplicates from the original dataframe A
.
As a conceptual example, if I have two dataframes:
words = [the, quick, fox, a, brown, fox]
stopWords = [the, a]
then I want the output to be, in any order:
words - stopWords = [quick, brown, fox, fox]
I observed that the RDD function subtract()
preserves the duplicates, but the Spark-SQL function except()
removes duplicates in the resulting data frame. I don't understand why the except()
output produces only unique values.
Here is a complete demonstration:
// ---------------------------------------------------------------
// EXAMPLE USING RDDs
// ---------------------------------------------------------------
var wordsRdd = sc.parallelize(List("the", "quick", "fox", "a", "brown", "fox"))
var stopWordsRdd = sc.parallelize(List("a", "the"))
var wordsWithoutStopWordsRdd = wordsRdd.subtract(stopWordsRdd)
wordsWithoutStopWordsRdd.take(10)
// res11: Array[String] = Array(quick, brown, fox, fox)
// ---------------------------------------------------------------
// EXAMPLE USING DATAFRAMES
// ---------------------------------------------------------------
var wordsDf = wordsRdd.toDF()
var stopWordsDf = stopWords.toDF()
var wordsWithoutStopWordsDf = wordsDf.except(stopWordsDf)
wordsWithoutStopWordsDf.show(10)
// +-----+
// |value|
// +-----+
// | fox|
// |brown|
// |quick|
// +-----+
I want to preserve duplicates because I am generating frequency tables.
Any help would be appreciated.