6

I'm seeking how to change an alpha value dynamically which are already plotted.

This is a kind of sample code I want to implement, but I know it is a wrong writing.

import matplotlib.pyplot as plt

fig = plt.subplot(1, 1)

for rate in [0.1 * x for x in range(10, -1, -1)]:
    plt.plot(range(0, 5), range(0, 5), color="r", alpha=rate)
    plt.pause(0.1)

plt.show()

The purpose of this sample code is that I want to decrease the alpha as the processing go on and make the line vanish.

Does somebody know a way to accomplish like this problem? Thank you.

ken333
  • 63
  • 1
  • 3

2 Answers2

11

I thought, that you wanted to control the alpha value for each point individually, so I set out to do this (based on this):

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.collections import LineCollection

class Vanishing_Line(object):
    def __init__(self, n_points, tail_length, rgb_color):
        self.n_points = int(n_points)
        self.tail_length = int(tail_length)
        self.rgb_color = rgb_color

    def set_data(self, x=None, y=None):
        if x is None or y is None:
            self.lc = LineCollection([])
        else:
            # ensure we don't start with more points than we want
            x = x[-self.n_points:]
            y = y[-self.n_points:]
            # create a list of points with shape (len(x), 1, 2)
            # array([[[  x0  ,  y0  ]],
            #        [[  x1  ,  y1  ]],
            #        ...,
            #        [[  xn  ,  yn  ]]])
            self.points = np.array([x, y]).T.reshape(-1, 1, 2)
            # group each point with the one following it (shape (len(x)-1, 2, 2)):
            # array([[[  x0  ,   y0  ],
            #         [  x1  ,   y1  ]],
            #        [[  x1  ,   y1  ],
            #         [  x2  ,   y2  ]],
            #         ...
            self.segments = np.concatenate([self.points[:-1], self.points[1:]],
                                           axis=1)
            if hasattr(self, 'alphas'):
                del self.alphas
            if hasattr(self, 'rgba_colors'):
                del self.rgba_colors
            #self.lc = LineCollection(self.segments, colors=self.get_colors())
            self.lc.set_segments(self.segments)
            self.lc.set_color(self.get_colors())

    def get_LineCollection(self):
        if not hasattr(self, 'lc'):
            self.set_data()
        return self.lc


    def add_point(self, x, y):
        if not hasattr(self, 'points'):
            self.set_data([x],[y])
        else:
            # TODO: could use a circular buffer to reduce memory operations...
            self.segments = np.concatenate((self.segments,[[self.points[-1][0],[x,y]]]))
            self.points = np.concatenate((self.points, [[[x,y]]]))
            # remove points if necessary:
            while len(self.points) > self.n_points:
                self.segments = self.segments[1:]
                self.points = self.points[1:]
            self.lc.set_segments(self.segments)
            self.lc.set_color(self.get_colors())

    def get_alphas(self):
        n = len(self.points)
        if n < self.n_points:
            rest_length = self.n_points - self.tail_length
            if n <= rest_length:
                return np.ones(n)
            else:
                tail_length = n - rest_length
                tail = np.linspace(1./tail_length, 1., tail_length)
                rest = np.ones(rest_length)
                return np.concatenate((tail, rest))
        else: # n == self.n_points
            if not hasattr(self, 'alphas'):
                tail = np.linspace(1./self.tail_length, 1., self.tail_length)
                rest = np.ones(self.n_points - self.tail_length)
                self.alphas = np.concatenate((tail, rest))
            return self.alphas

    def get_colors(self):
        n = len(self.points)
        if  n < 2:
            return [self.rgb_color+[1.] for i in xrange(n)]
        if n < self.n_points:
            alphas = self.get_alphas()
            rgba_colors = np.zeros((n, 4))
            # first place the rgb color in the first three columns
            rgba_colors[:,0:3] = self.rgb_color
            # and the fourth column needs to be your alphas
            rgba_colors[:, 3] = alphas
            return rgba_colors
        else:
            if hasattr(self, 'rgba_colors'):
                pass
            else:
                alphas = self.get_alphas()
                rgba_colors = np.zeros((n, 4))
                # first place the rgb color in the first three columns
                rgba_colors[:,0:3] = self.rgb_color
                # and the fourth column needs to be your alphas
                rgba_colors[:, 3] = alphas
                self.rgba_colors = rgba_colors
            return self.rgba_colors

def data_gen(t=0):
    "works like an iterable object!"
    cnt = 0
    while cnt < 1000:
        cnt += 1
        t += 0.1
        yield t, np.sin(2*np.pi*t) * np.exp(-t/100.)

def update(data):
    "Update the data, receives whatever is returned from `data_gen`"
    x, y = data
    line.add_point(x, y)
    # rescale the graph by large steps to avoid having to do it every time:
    xmin, xmax = ax.get_xlim()
    if x >= xmax:
        ax.set_xlim(xmin, 2*xmax)
        ax.figure.canvas.draw()
    return line,

if __name__ == '__main__':
    n_points = 100
    tail_length = (3/4.)*n_points
    rgb_color = [0., 0.5, 1.0]
    time_pause = 0 # miliseconds

    x=np.linspace(0, 4*np.pi, 2*n_points)
    y=np.cos(x)

    line = Vanishing_Line(n_points, tail_length, rgb_color)
    fig, ax = plt.subplots()
    ax.add_collection(line.get_LineCollection())
    ax.set_xlim(0, 4*np.pi)
    ax.set_ylim(-1.1,1.1)

    ani = animation.FuncAnimation(fig, update, data_gen, blit=False,
                                  interval=time_pause, repeat=False)

    fig.show()

    mywriter = animation.FFMpegWriter(fps=30)
    ani.save('ani.mp4', writer=mywriter, dpi=600)

It should plot a graphic with a vanishing line (saved with tips from here, and converted from mp4 to gif online):

enter image description here

There appears to be a bug at the start of the animation shown in real time by python when saving the graph, as there appears a line from [10,0] to the first point.

That line does not appear on the saved animation and if you comment the two lines to save to graph that disappears.

I believe the animation saving is running before the animation display, and thus the last point from the saving run is shown on the start of the display run.

Community
  • 1
  • 1
berna1111
  • 1,811
  • 1
  • 18
  • 23
  • Oh, and you can [control the saved animations length](http://stackoverflow.com/questions/22010586/matplotlib-animation-duration)... – berna1111 Apr 25 '17 at 15:03
  • Also, it appears that when the [`frames` argument](http://matplotlib.org/devdocs/api/_as_gen/matplotlib.animation.FuncAnimation.html) is a generator then the saver will by default save only 100 frames. Don't know why, but you can get around this by not using a generator and calculating the new values directly on the update function, and by giving `frames` an ìnt` value. – berna1111 Apr 25 '17 at 15:34
8

You can update the alpha value of an existing Line2D, using the set_alpha method. The idea would be to plot the line once and then update the alpha in the loop.

import matplotlib.pyplot as plt

fig = plt.subplot(111)
plt.ion()
line, = plt.plot(range(0, 5), range(0, 5), color="r", alpha=1)
for rate in [0.1 * x for x in range(10, -1, -1)]:
    line.set_alpha(rate)
    plt.draw()
    plt.pause(0.1)

plt.ioff()
plt.show()
ImportanceOfBeingErnest
  • 321,279
  • 53
  • 665
  • 712
  • Thank you! Is this mean that if I want to change the alpha value more than two (I mean, more than two different lines), do I have to hold each "line" objects ? – ken333 Apr 24 '17 at 23:19
  • Yes, but you can store them in a list, and loop over the list, so it's not really much more code. If you want to change the alpha for **all** lines in the graph, you could also just loop over `plt.gca().lines`. – ImportanceOfBeingErnest Apr 25 '17 at 07:48